Conformal nets and KK-theory

Given a completely rational conformal net A on the circle, its fusion ring acts faithfully on the K_0-group of a certain universal C*-algebra associated to A, as shown in a previous paper. We prove here that this action can actually be identified with a Kasparov product, thus paving the way for a fruitful interplay between conformal field theory and KK-theory.

[1]  R. Conti,et al.  Asymptotic Morphisms and Superselection Theory in the Scaling Limit II: Analysis of Some Models , 2012, Communications in Mathematical Physics.

[2]  R. Conti,et al.  Representations of Conformal Nets, Universal C*-Algebras and K-Theory , 2012, 1202.2543.

[3]  David E. Evans,et al.  Modular Invariants and Twisted Equivariant K-theory II: Dynkin diagram symmetries , 2010, 1012.1634.

[4]  Roberto Longo,et al.  Spectral Triples and the Super-Virasoro Algebra , 2008, 0811.4128.

[5]  R. Longo,et al.  Structure and Classification of Superconformal Nets , 2007, 0705.3609.

[6]  J. Brodzki,et al.  D-Branes, RR-Fields and Duality on Noncommutative Manifolds , 2006, hep-th/0607020.

[7]  J. Rosenberg,et al.  Topological and Bivariant K-Theory , 2007 .

[8]  R. Longo,et al.  Classification of local conformal nets , 2005 .

[9]  R. Longo,et al.  Classification of local conformal nets. Case c < 1 , 2002, Annals of Mathematics.

[10]  M. Izumi,et al.  INCLUSIONS OF SIMPLE C ∗-ALGEBRAS , 2001 .

[11]  Roberto Longo,et al.  Notes for a Quantum Index Theorem , 2000, math/0003082.

[12]  Yasuyuki Kawahigashi Multi-Interval Subfactors and Modularity¶of Representations in Conformal Field Theory , 1999, math/9903104.

[13]  Y. Watatani,et al.  Jones index theory by hilbert c*-bimodules and k-theory , 2000 .

[14]  C. Bachas on D-branes , 1999 .

[15]  B. Blackadar Operator Algebras , 1998 .

[16]  K. Thomsen,et al.  Hilbert C*-Modules , 1991 .

[17]  K. Thomsen,et al.  Elements of KK-theory , 1990 .

[18]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[19]  J. Cuntz Generalized homomorphisms between C*-algebras and KK-theory , 1983 .

[20]  K. Rehren Braid Group Statistics and their Superselection Rules , 2022 .