Parsing with Structure Preserving Categorial Grammars
暂无分享,去创建一个
[1] Geoffrey K. Pullum,et al. Generalized Phrase Structure Grammar , 1985 .
[2] Chris Hankin,et al. An Introduction to Lambda Calculi for Computer Scientists , 2004 .
[3] Joachim Lambek,et al. On the Calculus of Syntactic Types , 1961 .
[4] G. Morrill. Memoisation of categorial proof nets: parallelism in categorial processing , 1996 .
[5] Willemien Katrien Vermaat,et al. The logic of variation : A cross-linguistic account of wh-question formation , 2005 .
[6] Klaas Sikkel,et al. Parsing Schemata and Correctness of Parsing Algorithms , 1998, Theor. Comput. Sci..
[7] Yury Savateev. The derivability problem for Lambek calculus with one division , 2006 .
[8] W. Buszkowski. The Logic of Types , 1987 .
[9] Richard Spencer-Smith,et al. Modal Logic , 2007 .
[10] H.L.W. Hendriks. The Logic of Tune , 1997 .
[11] Michael Moortgat,et al. Symmetries in Natural Language Syntax and Semantics: The Lambek-Grishin Calculus , 2007, WoLLIC.
[12] Giorgio Satta,et al. Tabular Parsing , 2004, ArXiv.
[13] Mati Pentus,et al. Lambek grammars are context free , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.
[14] Mark Hepple,et al. A Compilation-Chart Method for Linear Categorial Deduction , 1996, COLING.
[15] Michael Moortgat. Multimodal Linguistic Inference , 1995, Log. J. IGPL.
[16] J.F.A.K. van Benthem,et al. Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .
[17] Chris Okasaki,et al. Purely functional data structures , 1998 .
[18] C. Pollard,et al. Center for the Study of Language and Information , 2022 .
[19] Daniel H. Younger,et al. Recognition and Parsing of Context-Free Languages in Time n^3 , 1967, Inf. Control..
[20] Klaas Sikkel,et al. Parsing Schemata , 1997, Texts in Theoretical Computer Science An EATCS Series.
[21] Michael A. Arbib,et al. An Introduction to Formal Language Theory , 1988, Texts and Monographs in Computer Science.
[22] Jason Baldridge,et al. Lexically specified derivational control in combinatory categorial grammar , 2002 .
[23] Jason Baldridge,et al. Multi-Modal Combinatory Categorial Grammar , 2003, EACL.
[24] William C. Frederick,et al. A Combinatory Logic , 1995 .
[25] Isabelle Tellier,et al. A Polynomial Algorithm for the Membership Problem with Categorial Grammars , 1996, Theor. Comput. Sci..
[26] R. Bernardi. Reasoning with Polarity in Categorial Type Logic , 2002 .
[27] Alfred V. Aho,et al. The Theory of Parsing, Translation, and Compiling , 1972 .
[28] François Lamarche,et al. Classical Non-Associative Lambek Calculus , 2002, Stud Logica.
[29] David J. Weir,et al. Combinatory Categorial Grammars: Generative Power and Relationship to Linear Context-Free Rewriting Systems , 1988, ACL.
[30] Nissim Francez,et al. Basic simple type theory , 1998 .
[31] Noam Chomsky,et al. On Certain Formal Properties of Grammars , 1959, Inf. Control..
[32] Y. Bar-Hillel. A Quasi-Arithmetical Notation for Syntactic Description , 1953 .
[33] N. Kurtonina,et al. Frames and Labels , 1995 .
[34] Yannick Le Nir. Structure des analyses syntaxiques catégorielles : Application à l'inférence grammaticale , 2003 .
[35] Carl Pollard,et al. A Computational Semantics for Natural Language , 1985, ACL.
[36] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[37] H.L.W. Hendriks. A Proof-Theoretic Analysis of Intonation , 1997 .
[38] Mark Hepple,et al. An Earley-style Predictive Chart Parsing Method for Lambek Grammars , 1999, ACL.
[39] Michael Moortgat,et al. Constants of grammatical reasoning , 2000 .
[40] Glyn Morrill,et al. Switch Graphs for Parsing Type Logical Grammars , 2005, IWPT.
[41] Martin Kay,et al. Syntactic Process , 1979, ACL.
[42] Maciej Kandulski. The equivalence of Nonassociative Lambek Categorial Grammars and Context-Free Grammars , 1988, Math. Log. Q..
[43] David H. D. Warren,et al. Parsing as Deduction , 1983, ACL.
[44] Wojciech Buszkowski,et al. Mathematical Linguistics and Proof Theory , 1997, Handbook of Logic and Language.
[45] David J. Weir,et al. Polynomial Time Parsing of Combinatory Categorial Grammars , 1990, ACL.
[46] Mark Steedman,et al. On the order of words , 1982 .
[47] Bob Carpenter,et al. The Turing Completeness of Multimodal Categorial Grammars , 1999 .
[48] Hans-Jörg Tiede. Lambek Calculus Proofs and Tree Automata , 1998, LACL.
[49] Yannick Le Nir. From Proof Trees in Lambek Calculus to Ajdukiewicz Bar-Hillel Elimination Binary Trees , 2003 .
[50] Kosta Dosen,et al. A Brief Survey of Frames for the Lambek Calculus , 1992, Math. Log. Q..
[51] Dirk Roorda,et al. Resource Logics : Proof-Theoretical Investigations , 1991 .
[52] Esther König,et al. A Hypothetical Reasoning Algorithm for Linguistic Analysis , 1994, J. Log. Comput..
[53] Esther Kraak,et al. French Object Clitics: A Multimodal Analysis , 1995 .
[54] Wojciech Zielonka. Axiomatizability of Ajdukiewicz-Lambek Calculus by Means of Cancellation Schemes , 1981, Math. Log. Q..
[55] Michael Moortgat,et al. Categorial Type Logics , 1997, Handbook of Logic and Language.
[56] Dirk K.J. Heylen,et al. Types and Sorts: Resource Logic for Feature Checking , 1999 .
[57] Stuart M. Shieber,et al. Principles and Implementation of Deductive Parsing , 1994, J. Log. Program..
[58] Peyton Jones,et al. Haskell 98 language and libraries : the revised report , 2003 .
[59] M B. P-time Decidability of Nl1 with Assumptions , .
[60] Michael Moortgat,et al. Structural control , 1997 .
[61] Mati Pentus,et al. Lambek calculus is NP-complete , 2006, Theor. Comput. Sci..
[62] Michael Moortgat,et al. Continuation Semantics for Symmetric Categorial Grammar , 2007, WoLLIC.
[63] Wojciech Buszkowski,et al. Generative capacity of nonassociative Lambek calculus , 1986 .
[64] M. de Rijke,et al. JFAK. Essays Dedicated to Johan van Benthem on the occasion of his 50th Birthday , 1999 .
[65] Wojciech Buszkowski. Gaifman's theorem on categorial grammars revisited , 1988, Stud Logica.
[66] C. Retoré. The Logic of Categorial Grammars: Lecture Notes , 2005 .
[67] R. Montague. Formal philosophy; selected papers of Richard Montague , 1974 .
[68] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[69] Lawrence S. Moss,et al. Deductive systems and grammars: proofs as grammatical structures , 1999 .
[70] Dirk Roorda. Interpolation in Fragments of Classical Linear Logic , 1994, J. Symb. Log..
[71] Richard Montague,et al. ENGLISH AS A FORMAL LANGUAGE , 1975 .
[72] Walter L. Ruzzo,et al. An Improved Context-Free Recognizer , 1980, ACM Trans. Program. Lang. Syst..
[73] Herman Hendriks,et al. The Logic of Tune - A Proof-Theoretic Analysis of Intonation , 1997, LACL.
[74] Mark Hepple. Discontinuity And The Lambek Calculus , 1994, COLING.
[75] Hans Joerg Tiede. Counting the Number of Proofs in the Commutative Lambek Calculus , 1999 .
[76] Marek Szczerba. Representation theorems for residuated groupoids , 1998, RelMiCS.
[77] Klaas Sikkel,et al. Parsing of Context-Free Languages , 1997, Handbook of Formal Languages.
[78] Chris Okasaki,et al. Red-black trees in a functional setting , 1999, Journal of Functional Programming.
[79] Tadao Kasami,et al. An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Languages , 1965 .
[80] M. Moortgat. Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus , 1988 .
[81] Jay Earley,et al. An efficient context-free parsing algorithm , 1970, Commun. ACM.
[82] Stuart M. Shieber,et al. Prolog and Natural-Language Analysis , 1987 .
[83] H.L.W. Hendriks,et al. Studied flexibility : categories and types in syntax and semantics , 1993 .
[84] Mati Pentus. Models for the Lambek Calculus , 1995, Ann. Pure Appl. Log..
[85] David J. Weir,et al. The equivalence of four extensions of context-free grammars , 1994, Mathematical systems theory.
[86] Mark Steedman,et al. Information Structure and the Syntax-Phonology Interface , 2000, Linguistic Inquiry.
[87] Jean-Marc Andreoli. Focussing and proof construction , 2001, Ann. Pure Appl. Log..
[88] Robin Milner,et al. Principal type-schemes for functional programs , 1982, POPL '82.
[89] Philippe de Groote,et al. The Non-Associative Lambek Calculus with Product in Polynomial Time , 1999, TABLEAUX.