Parsing with Structure Preserving Categorial Grammars

This book is a study of the logical and computational properties of structure-preserving categorial grammars. The first part of the book presents chart-parsers for non-associative categorial grammars in the style of Ajdukiewicz and Bar-Hillel. These are proposed in Chapter 3 as deductive parsers, that is as deductive systems which take advantage of the linear order of the syntactic categories. In Chapter 4 they are formulated as polynomial parsing algorithms. An important aspect is the formulation of efficient methods for handling product formulas in the parsing process. The second part of the book deals with Lambek style categorial grammars. A simple and elegant method for automatic recognition is formulated in Chapter 5 and its syntactic and semantic properties are explored in the subsequent chapters. A surprising result is the connection between the number of semantic readings of a sequent and the binomial coefficient discussed in Chapter 6. The results of polynomiality in Chapter 7 are grounded on explicit algorithms which generalize and improve previous results. The parsing techniques presented in this book are among the first complete applications of chart-parsing methods to logical grammars and lay the ground for a new approach to parsing with type-logical grammars.

[1]  Geoffrey K. Pullum,et al.  Generalized Phrase Structure Grammar , 1985 .

[2]  Chris Hankin,et al.  An Introduction to Lambda Calculi for Computer Scientists , 2004 .

[3]  Joachim Lambek,et al.  On the Calculus of Syntactic Types , 1961 .

[4]  G. Morrill Memoisation of categorial proof nets: parallelism in categorial processing , 1996 .

[5]  Willemien Katrien Vermaat,et al.  The logic of variation : A cross-linguistic account of wh-question formation , 2005 .

[6]  Klaas Sikkel,et al.  Parsing Schemata and Correctness of Parsing Algorithms , 1998, Theor. Comput. Sci..

[7]  Yury Savateev The derivability problem for Lambek calculus with one division , 2006 .

[8]  W. Buszkowski The Logic of Types , 1987 .

[9]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[10]  H.L.W. Hendriks The Logic of Tune , 1997 .

[11]  Michael Moortgat,et al.  Symmetries in Natural Language Syntax and Semantics: The Lambek-Grishin Calculus , 2007, WoLLIC.

[12]  Giorgio Satta,et al.  Tabular Parsing , 2004, ArXiv.

[13]  Mati Pentus,et al.  Lambek grammars are context free , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[14]  Mark Hepple,et al.  A Compilation-Chart Method for Linear Categorial Deduction , 1996, COLING.

[15]  Michael Moortgat Multimodal Linguistic Inference , 1995, Log. J. IGPL.

[16]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[17]  Chris Okasaki,et al.  Purely functional data structures , 1998 .

[18]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[19]  Daniel H. Younger,et al.  Recognition and Parsing of Context-Free Languages in Time n^3 , 1967, Inf. Control..

[20]  Klaas Sikkel,et al.  Parsing Schemata , 1997, Texts in Theoretical Computer Science An EATCS Series.

[21]  Michael A. Arbib,et al.  An Introduction to Formal Language Theory , 1988, Texts and Monographs in Computer Science.

[22]  Jason Baldridge,et al.  Lexically specified derivational control in combinatory categorial grammar , 2002 .

[23]  Jason Baldridge,et al.  Multi-Modal Combinatory Categorial Grammar , 2003, EACL.

[24]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[25]  Isabelle Tellier,et al.  A Polynomial Algorithm for the Membership Problem with Categorial Grammars , 1996, Theor. Comput. Sci..

[26]  R. Bernardi Reasoning with Polarity in Categorial Type Logic , 2002 .

[27]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[28]  François Lamarche,et al.  Classical Non-Associative Lambek Calculus , 2002, Stud Logica.

[29]  David J. Weir,et al.  Combinatory Categorial Grammars: Generative Power and Relationship to Linear Context-Free Rewriting Systems , 1988, ACL.

[30]  Nissim Francez,et al.  Basic simple type theory , 1998 .

[31]  Noam Chomsky,et al.  On Certain Formal Properties of Grammars , 1959, Inf. Control..

[32]  Y. Bar-Hillel A Quasi-Arithmetical Notation for Syntactic Description , 1953 .

[33]  N. Kurtonina,et al.  Frames and Labels , 1995 .

[34]  Yannick Le Nir Structure des analyses syntaxiques catégorielles : Application à l'inférence grammaticale , 2003 .

[35]  Carl Pollard,et al.  A Computational Semantics for Natural Language , 1985, ACL.

[36]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[37]  H.L.W. Hendriks A Proof-Theoretic Analysis of Intonation , 1997 .

[38]  Mark Hepple,et al.  An Earley-style Predictive Chart Parsing Method for Lambek Grammars , 1999, ACL.

[39]  Michael Moortgat,et al.  Constants of grammatical reasoning , 2000 .

[40]  Glyn Morrill,et al.  Switch Graphs for Parsing Type Logical Grammars , 2005, IWPT.

[41]  Martin Kay,et al.  Syntactic Process , 1979, ACL.

[42]  Maciej Kandulski The equivalence of Nonassociative Lambek Categorial Grammars and Context-Free Grammars , 1988, Math. Log. Q..

[43]  David H. D. Warren,et al.  Parsing as Deduction , 1983, ACL.

[44]  Wojciech Buszkowski,et al.  Mathematical Linguistics and Proof Theory , 1997, Handbook of Logic and Language.

[45]  David J. Weir,et al.  Polynomial Time Parsing of Combinatory Categorial Grammars , 1990, ACL.

[46]  Mark Steedman,et al.  On the order of words , 1982 .

[47]  Bob Carpenter,et al.  The Turing Completeness of Multimodal Categorial Grammars , 1999 .

[48]  Hans-Jörg Tiede Lambek Calculus Proofs and Tree Automata , 1998, LACL.

[49]  Yannick Le Nir From Proof Trees in Lambek Calculus to Ajdukiewicz Bar-Hillel Elimination Binary Trees , 2003 .

[50]  Kosta Dosen,et al.  A Brief Survey of Frames for the Lambek Calculus , 1992, Math. Log. Q..

[51]  Dirk Roorda,et al.  Resource Logics : Proof-Theoretical Investigations , 1991 .

[52]  Esther König,et al.  A Hypothetical Reasoning Algorithm for Linguistic Analysis , 1994, J. Log. Comput..

[53]  Esther Kraak,et al.  French Object Clitics: A Multimodal Analysis , 1995 .

[54]  Wojciech Zielonka Axiomatizability of Ajdukiewicz-Lambek Calculus by Means of Cancellation Schemes , 1981, Math. Log. Q..

[55]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[56]  Dirk K.J. Heylen,et al.  Types and Sorts: Resource Logic for Feature Checking , 1999 .

[57]  Stuart M. Shieber,et al.  Principles and Implementation of Deductive Parsing , 1994, J. Log. Program..

[58]  Peyton Jones,et al.  Haskell 98 language and libraries : the revised report , 2003 .

[59]  M B P-time Decidability of Nl1 with Assumptions , .

[60]  Michael Moortgat,et al.  Structural control , 1997 .

[61]  Mati Pentus,et al.  Lambek calculus is NP-complete , 2006, Theor. Comput. Sci..

[62]  Michael Moortgat,et al.  Continuation Semantics for Symmetric Categorial Grammar , 2007, WoLLIC.

[63]  Wojciech Buszkowski,et al.  Generative capacity of nonassociative Lambek calculus , 1986 .

[64]  M. de Rijke,et al.  JFAK. Essays Dedicated to Johan van Benthem on the occasion of his 50th Birthday , 1999 .

[65]  Wojciech Buszkowski Gaifman's theorem on categorial grammars revisited , 1988, Stud Logica.

[66]  C. Retoré The Logic of Categorial Grammars: Lecture Notes , 2005 .

[67]  R. Montague Formal philosophy; selected papers of Richard Montague , 1974 .

[68]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[69]  Lawrence S. Moss,et al.  Deductive systems and grammars: proofs as grammatical structures , 1999 .

[70]  Dirk Roorda Interpolation in Fragments of Classical Linear Logic , 1994, J. Symb. Log..

[71]  Richard Montague,et al.  ENGLISH AS A FORMAL LANGUAGE , 1975 .

[72]  Walter L. Ruzzo,et al.  An Improved Context-Free Recognizer , 1980, ACM Trans. Program. Lang. Syst..

[73]  Herman Hendriks,et al.  The Logic of Tune - A Proof-Theoretic Analysis of Intonation , 1997, LACL.

[74]  Mark Hepple Discontinuity And The Lambek Calculus , 1994, COLING.

[75]  Hans Joerg Tiede Counting the Number of Proofs in the Commutative Lambek Calculus , 1999 .

[76]  Marek Szczerba Representation theorems for residuated groupoids , 1998, RelMiCS.

[77]  Klaas Sikkel,et al.  Parsing of Context-Free Languages , 1997, Handbook of Formal Languages.

[78]  Chris Okasaki,et al.  Red-black trees in a functional setting , 1999, Journal of Functional Programming.

[79]  Tadao Kasami,et al.  An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Languages , 1965 .

[80]  M. Moortgat Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus , 1988 .

[81]  Jay Earley,et al.  An efficient context-free parsing algorithm , 1970, Commun. ACM.

[82]  Stuart M. Shieber,et al.  Prolog and Natural-Language Analysis , 1987 .

[83]  H.L.W. Hendriks,et al.  Studied flexibility : categories and types in syntax and semantics , 1993 .

[84]  Mati Pentus Models for the Lambek Calculus , 1995, Ann. Pure Appl. Log..

[85]  David J. Weir,et al.  The equivalence of four extensions of context-free grammars , 1994, Mathematical systems theory.

[86]  Mark Steedman,et al.  Information Structure and the Syntax-Phonology Interface , 2000, Linguistic Inquiry.

[87]  Jean-Marc Andreoli Focussing and proof construction , 2001, Ann. Pure Appl. Log..

[88]  Robin Milner,et al.  Principal type-schemes for functional programs , 1982, POPL '82.

[89]  Philippe de Groote,et al.  The Non-Associative Lambek Calculus with Product in Polynomial Time , 1999, TABLEAUX.