A note on partial calmness for bilevel optimization problems with linearly structured lower level

Partial calmness is a celebrated but restrictive property of bilevel optimization problems whose presence opens a way to the derivation of Karush--Kuhn--Tucker-type necessary optimality conditions in order to characterize local minimizers. In the past, sufficient conditions for the validity of partial calmness have been investigated. In this regard, the presence of a linearly structured lower level problem has turned out to be beneficial. However, the associated literature suffers from inaccurate results. In this note, we clarify some regarding erroneous statements and visualize the underlying issues with the aid of illustrative counterexamples.

[1]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[2]  Stephan Dempe,et al.  The bilevel programming problem: reformulations, constraint qualifications and optimality conditions , 2013, Math. Program..

[3]  Jane J. Ye,et al.  Optimal Strategies For Bilevel Dynamic Problems , 1997 .

[4]  B. Mordukhovich,et al.  New necessary optimality conditions in optimistic bilevel programming , 2007 .

[5]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[6]  R. Henrion,et al.  On calmness conditions in convex bilevel programming , 2011 .

[7]  L. Minchenko,et al.  On Lipschitz-like continuity of a class of set-valued mappings , 2019, Optimization.

[8]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[9]  Stephan Dempe,et al.  Bilevel road pricing: theoretical analysis and optimality conditions , 2012, Ann. Oper. Res..

[10]  P. Mehlitz Bilevel programming problems with simple convex lower level , 2016 .

[11]  Patrice Marcotte,et al.  Bilevel Programming , 2009, Encyclopedia of Optimization.

[12]  Francisco Benita,et al.  Bilevel Optimal Control With Final-State-Dependent Finite-Dimensional Lower Level , 2016, SIAM J. Optim..

[13]  Boris S. Mordukhovich,et al.  Variational Analysis of Marginal Functions with Applications to Bilevel Programming , 2012, J. Optim. Theory Appl..

[14]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[15]  Stephan Dempe,et al.  The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs , 2011, J. Optim. Theory Appl..

[16]  M. Ferris,et al.  Weak sharp minima in mathematical programming , 1993 .

[17]  A. Ioffe Regular points of Lipschitz functions , 1979 .

[18]  C. SIAMJ.,et al.  OPTIMAL STRATEGIES FOR BILEVEL DYNAMIC PROBLEMS , 1997 .

[19]  Jane J. Ye Necessary Conditions for Bilevel Dynamic Optimization Problems , 1995 .

[20]  B. Luderer,et al.  Multivalued Analysis and Nonlinear Programming Problems with Perturbations , 2002 .

[21]  Jirí V. Outrata,et al.  A note on the usage of nondifferentiable exact penalties in some special optimization problems , 1988, Kybernetika.

[22]  Nataliya I. Kalashnykova,et al.  Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Networks , 2015 .

[23]  Boris S. Mordukhovich,et al.  Variational Stability and Marginal Functions via Generalized Differentiation , 2005, Math. Oper. Res..

[24]  Stephan Dempe,et al.  Optimality Conditions for Special Semidefinite Bilevel Optimization Problems , 2018, SIAM J. Optim..

[25]  Andreas Fischer,et al.  Semismooth Newton-type method for bilevel optimization: global convergence and extensive numerical experiments , 2019, Optim. Methods Softw..

[26]  Jane J. Ye,et al.  New Necessary Optimality Conditions for Bilevel Programs by Combining the MPEC and Value Function Approaches , 2010, SIAM J. Optim..

[27]  Paul Bourke,et al.  Automatic 3D reconstruction: An exploration of the state of the art , 2015 .

[28]  Jane J. Ye,et al.  New Uniform Parametric Error Bounds , 1998 .

[29]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[30]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[31]  L. Minchenko On Global Partial Calmness for Bilevel Programming Problems with Linear Lower Level Problem , 2017 .

[32]  René Henrion,et al.  Calmness of constraint systems with applications , 2005, Math. Program..

[33]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .