Inverse Path Tracing for Joint Material and Lighting Estimation

Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials and illumination. We introduce Inverse Path Tracing, a novel approach to jointly estimate the material properties of objects and light sources in indoor scenes by using an invertible light transport simulation. We assume a coarse geometry scan, along with corresponding images and camera poses. The key contribution of this work is an accurate and simultaneous retrieval of light sources and physically based material properties (e.g., diffuse reflectance, specular reflectance, roughness, etc.) for the purpose of editing and re-rendering the scene under new conditions. To this end, we introduce a novel optimization method using a differentiable Monte Carlo renderer that computes derivatives with respect to the estimated unknown illumination and material properties. This enables joint optimization for physically correct light transport and material models using a tailored stochastic gradient descent.

[1]  Gabe Sibley,et al.  Light Source Estimation with Analytical Path-tracing , 2017, ArXiv.

[2]  Jitendra Malik,et al.  Shape, Illumination, and Reflectance from Shading , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[4]  Michael J. Black,et al.  OpenDR: An Approximate Differentiable Renderer , 2014, ECCV.

[5]  Matthias Nießner,et al.  BundleFusion , 2016, TOGS.

[6]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[7]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[8]  Kun Zhou,et al.  Efficient reflectance capture using an autoencoder , 2018, ACM Trans. Graph..

[9]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[10]  Shahram Izadi,et al.  Real-time shading-based refinement for consumer depth cameras , 2014, ACM Trans. Graph..

[11]  Hans-Peter Seidel,et al.  LIME: Live Intrinsic Material Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[12]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Tatsuya Harada,et al.  Neural 3D Mesh Renderer , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Pat Hanrahan,et al.  A signal-processing framework for inverse rendering , 2001, SIGGRAPH.

[15]  G. Stiny Shape , 1999 .

[16]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[17]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[18]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[19]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[20]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[21]  Christian Theobalt,et al.  Live intrinsic video , 2016, ACM Trans. Graph..

[22]  Shuang Zhao,et al.  Inverse Transport Networks , 2018, ArXiv.

[23]  James T. Kajiya,et al.  The rendering equation , 1998 .

[24]  S. Marschner,et al.  Inverse Rendering for Computer Graphics , 1998 .

[25]  Jaakko Lehtinen,et al.  Differentiable Monte Carlo ray tracing through edge sampling , 2018, ACM Trans. Graph..

[26]  Gustavo Patow,et al.  A Survey of Inverse Rendering Problems , 2003, Comput. Graph. Forum.

[27]  Shuang Zhao,et al.  Inverse volume rendering with material dictionaries , 2013, ACM Trans. Graph..

[28]  Michael F. Cohen,et al.  Emptying, refurnishing, and relighting indoor spaces , 2016, ACM Trans. Graph..

[29]  Anat Levin,et al.  An Evaluation of Computational Imaging Techniques for Heterogeneous Inverse Scattering , 2016, ECCV.

[30]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[31]  Paul Debevec,et al.  Inverse global illumination: Recovering re?ectance models of real scenes from photographs , 1998 .

[32]  Matthias Nießner,et al.  Matterport3D: Learning from RGB-D Data in Indoor Environments , 2017, 2017 International Conference on 3D Vision (3DV).

[33]  Matthias Nießner,et al.  Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[34]  Matthias Nießner,et al.  Shading-based refinement on volumetric signed distance functions , 2015, ACM Trans. Graph..

[35]  Justus Thies,et al.  Face2Face: real-time face capture and reenactment of RGB videos , 2019, Commun. ACM.

[36]  Matthias Nießner,et al.  A Lightweight Approach for On-the-Fly Reflectance Estimation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[37]  Pieter Peers,et al.  Appearance-from-motion , 2014, ACM Trans. Graph..

[38]  Ingo Wald,et al.  Embree: a kernel framework for efficient CPU ray tracing , 2014, ACM Trans. Graph..

[39]  Balazs Kovacs,et al.  Intrinsic Decompositions for Image Editing , 2017, Comput. Graph. Forum.

[40]  Adrien Bousseau,et al.  Single-image SVBRDF capture with a rendering-aware deep network , 2018, ACM Trans. Graph..