Introduction to Atomistic Simulation Methods

In this chapter we give a synopsis of classical simulation methods for atomic and molecular systems. We discuss the fundamental principles and empirical potentials underlying molecular statics and dynamics. We also introduce the connection to statistical mechanics and the estimation of macroscale material properties. In addition to theoretical aspects of atomistic simulation methods, we provide an overview of practical aspects, and the tools and simulation packages that are currently available.

[1]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[2]  Michael J. Mills,et al.  Investigations of the misfit dislocation structure at a CdTe(001)/ga As(001) interface using Stillinger-Weber potentials and high-resolution transmission electron microscopy , 1995 .

[3]  Shuichi Nosé,et al.  Constant-temperature molecular dynamics , 1990 .

[4]  Satoshi Izumi,et al.  Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation , 2007 .

[5]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[6]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[7]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[8]  Jun Chen,et al.  Stillinger-Weber parameters for In and N atoms , 2006 .

[9]  Kai Nordlund,et al.  Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs , 2002 .

[10]  P. Erhart,et al.  Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide , 2005 .

[11]  M. V. Eremin,et al.  Spin-dimerization in rare-earth substituted La2RuO5 , 2012 .

[12]  David G. Pettifor,et al.  Analytic bond-order potential for open and close-packed phases , 2002 .

[13]  Harold S. Park,et al.  Mechanics of Crystalline Nanowires , 2009 .

[14]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[15]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[16]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[17]  Mark D. Allendorf,et al.  The Interaction of Water with MOF-5 Simulated by Molecular Dynamics , 2006 .

[18]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[19]  Michael J. Mehl,et al.  Phase stability in the Fe–Ni system: Investigation by first-principles calculations and atomistic simulations , 2005 .

[20]  Byeong-Joo Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–H system , 2006 .

[21]  Pekka Koskinen,et al.  Structural relaxation made simple. , 2006, Physical review letters.

[22]  Denis J. Evans,et al.  Homogeneous NEMD algorithm for thermal conductivity—Application of non-canonical linear response theory , 1982 .

[23]  Kai Nordlund,et al.  Development of interatomic ReaxFF potentials for Au-S-C-H systems. , 2011, The journal of physical chemistry. A.

[24]  Francesca Tavazza,et al.  Considerations for choosing and using force fields and interatomic potentials in materials science and engineering , 2013 .

[25]  Masaya Ichimura,et al.  Stillinger-Weber potentials for III-V compound semiconductors and their application to the critical thickness calculation for InAs/GaAs , 1996 .

[26]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[27]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[28]  Christopher R. Weinberger,et al.  Plasticity of metal nanowires , 2012 .

[29]  Timon Rabczuk,et al.  Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity , 2013, 1307.7072.

[30]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[31]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[32]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[33]  Eduardo M. Bringa,et al.  Mechanical response of nanoporous gold , 2013 .

[34]  V. Vitek,et al.  Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2〈1 1 1〉 screw dislocations at 0 K , 2008 .

[35]  John J. Gilman,et al.  Electronic Basis of the Strength of Materials , 2003 .

[36]  Utkarsh Ayachit,et al.  The ParaView Guide: A Parallel Visualization Application , 2015 .

[37]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded atom method potentials for bcc transition metals , 2001 .

[38]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[39]  Haydn N. G. Wadley,et al.  Analytic bond-order potential for the gallium arsenide system , 2006 .

[40]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[41]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[42]  A. V. Duin,et al.  Adhesion and nonwetting-wetting transition in the Al/alpha-Al_2O_3 interface , 2004 .

[43]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[44]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[45]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[46]  A. Béré,et al.  On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries , 2006 .

[47]  Kai Nordlund,et al.  Simulations of cementite: An analytical potential for the Fe-C system , 2009 .

[48]  Mark F. Horstemeyer,et al.  Structural, elastic, and thermal properties of cementite ( Fe 3 C ) calculated using a modified embedded atom method , 2012, 1202.3068.

[49]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[50]  R. Müller,et al.  Analytic bond-order potential for atomistic simulations of zinc oxide , 2006 .

[51]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[52]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[53]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[54]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[55]  P. Erhart,et al.  Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials , 2007 .

[56]  Y. Mishin,et al.  Angular-dependent interatomic potential for tantalum , 2006 .

[57]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[58]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[59]  Ling Ti Kong,et al.  Phonon dispersion measured directly from molecular dynamics simulations , 2011, Comput. Phys. Commun..

[60]  Mills,et al.  Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. , 1994, Physical review letters.

[61]  Seunghwa Ryu,et al.  A gold–silicon potential fitted to the binary phase diagram , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[62]  David G. Pettifor,et al.  ANALYTIC BOND-ORDER POTENTIALS BEYOND TERSOFF-BRENNER. II. APPLICATION TO THE HYDROCARBONS , 1999 .

[63]  Subrahmanyam Pattamatta,et al.  Mapping the stochastic response of nanostructures , 2014, Proceedings of the National Academy of Sciences.

[64]  Bryan M. Wong,et al.  Analytical bond-order potential for the Cd-Zn-Te ternary system , 2012 .

[65]  Jochen Bandlow,et al.  Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation. , 2014, Physical chemistry chemical physics : PCCP.

[66]  David G. Pettifor,et al.  Interatomic bond-order potentials and structural prediction , 2004 .

[67]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[68]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[69]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[70]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[71]  James P. Sethna,et al.  The potential of atomistic simulations and the knowledgebase of interatomic models , 2011 .

[72]  Kai Nordlund,et al.  Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride , 2003 .

[73]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[74]  Christian Elsässer,et al.  Bond-Order Potential for Simulations of Extended Defects in Tungsten , 2007 .

[75]  Kai Nordlund,et al.  Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system , 2005 .

[76]  Haydn N. G. Wadley,et al.  Analytic bond-order potentials for modelling the growth of semiconductor thin films , 2007 .

[77]  D. Pettifor,et al.  Bounded analytic bond-order potentials for sigma and pi bonds , 2000, Physical review letters.

[78]  Marie Backman,et al.  Bond order potential for gold , 2012 .

[79]  David G. Pettifor,et al.  Atom-based bond-order potentials for modelling mechanical properties of metals , 2007 .

[80]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[81]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[82]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[83]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[84]  Gerard T. Barkema,et al.  Fitting the Stillinger–Weber potential to amorphous silicon , 2001 .

[85]  Teruaki Motooka,et al.  Interatomic potential for Si–O systems using Tersoff parameterization , 2007 .

[86]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[87]  Michael W. Finnis,et al.  Bond-order potentials through the ages , 2007 .

[88]  Jörg Stadler,et al.  IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers , 1997 .

[89]  Pierre Ruterana,et al.  An empirical potential for the calculation of the atomic structure of extended defects in wurtzite GaN , 2000 .

[90]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[91]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[92]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[93]  D. Nguyen-Manh,et al.  Magnetic bond-order potential for iron. , 2011, Physical review letters.

[94]  Johannes Roth,et al.  IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical Simulations – Structure, Applications, Latest Developments , 2013 .

[95]  Andersen,et al.  Molecular-dynamics simulation of amorphous germanium. , 1986, Physical review. B, Condensed matter.

[96]  N. Karasawa,et al.  Acceleration of convergence for lattice sums , 1989 .

[97]  Tersoff Chemical order in amorphous silicon carbide. , 1994, Physical review. B, Condensed matter.

[98]  William A Goddard,et al.  ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. , 2008, The journal of physical chemistry. A.

[99]  Zhang Kaiming,et al.  Modification of Stillinger-Weber potentials for Si and Ge , 1990 .

[100]  Max A. Migliorato,et al.  Optimized Tersoff potential parameters for tetrahedrally bonded III-V semiconductors , 2007 .

[101]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[102]  David G. Pettifor,et al.  Bond-order potential for molybdenum: Application to dislocation behavior , 2004 .

[103]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[104]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[105]  Tersoff Carbon defects and defect reactions in silicon. , 1990, Physical review letters.

[106]  Adalberto Fazzio,et al.  STRUCTURAL PROPERTIES OF AMORPHOUS SILICON NITRIDE , 1998 .

[107]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[108]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[109]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[110]  Xiaowang Zhou,et al.  Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te , 2013 .

[111]  Vasily V. Bulatov,et al.  Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .

[112]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .