A 22-to-47 GHz 2-Stage LNA With 22.2 dB Peak Gain by Using Coupled L-Type Interstage Matching Inductors

This article presents a 22–47 GHz wideband low-noise amplifier (LNA) with coupled L-type interstage matching inductors. The coupled inductors extend the bandwidth of LNA by moving zeros to lower frequencies to cancel the effect of poles. Meanwhile, asymmetric L-type inductors with different inductances can be designed separately to achieve better gain flatness. In addition, the quality factor of coupled inductors is also slightly improved without significantly changing their inductance. The LNA is fabricated in a 0.13- $\mu \text{m}$ SiGe BiCMOS technology, and it occupies a core area of 0.13 mm2. The LNA achieves a peak gain of 22.2 dB with the 3dB bandwidth of 22–47 GHz (fractional bandwidth up to 72.5%). The measured NF varies between 3.0 and 4.3 dB from 22 to 47 GHz. The measured input 1-dB gain compression point is stable from −23.9 to −22.6 dBm in the entire 3-dB gain bandwidth. The chip consumes a total power of 9.5 mW from a 1.2 V supply.

[1]  Sherif Shakib,et al.  A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS , 2018, IEEE Microwave and Wireless Components Letters.

[2]  Peter G. M. Baltus,et al.  Silicon-Based True-Time-Delay Phased-Array Front-Ends at Ka-Band , 2015, IEEE Transactions on Microwave Theory and Techniques.

[3]  Yi-Jan Emery Chen,et al.  A Ka-Band Low Noise Amplifier Using Forward Combining Technique , 2010, IEEE Microwave and Wireless Components Letters.

[4]  D. Leenaerts,et al.  A 29–37 GHz BiCMOS Low-Noise Amplifier with 28.5 dB Peak Gain and 3.1-4.1 dB NF , 2018, 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[5]  Ping Chen,et al.  A novel distributed amplifier with high gain, low noise and high output power in 0.18-µm CMOS technology , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[6]  A 1.7-dB Minimum NF, 22-32 GHz Low-Noise Feedback Amplifier with Multistage Noise Matching in 22-nm SOI-CMOS , 2019, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[8]  P. Garcia,et al.  A Wideband W-Band Receiver Front-End in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[9]  Florian Herrault,et al.  Ka-Band LNA MMIC's Realized in Fmax > 580 GHz GaN HEMT Technology , 2016, 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[10]  M. Rodwell,et al.  An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier , 2004, IEEE Microwave and Wireless Components Letters.

[11]  Jacques C. Rudell,et al.  A Compact 77% Fractional Bandwidth CMOS Band-Pass Distributed Amplifier With Mirror-Symmetric Norton Transforms , 2015, IEEE Journal of Solid-State Circuits.

[12]  Abdolali Abdipour,et al.  A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Edgar Sánchez-Sinencio,et al.  A Millimeter-Wave (23–32 GHz) Wideband BiCMOS Low-Noise Amplifier , 2010, IEEE Journal of Solid-State Circuits.

[15]  Domine M. W. Leenaerts,et al.  A 16–43 GHz low-noise amplifer with 2.5–4.0 dB noise figure , 2016, 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[16]  Gholamreza Nikandish,et al.  Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[17]  D.J. Allstot,et al.  Bandwidth Extension Techniques for CMOS Amplifiers , 2006, IEEE Journal of Solid-State Circuits.

[18]  Cam Nguyen,et al.  A $K\text{-}/Ka$ -Band Concurrent Dual-Band Single-Ended Input to Differential Output Low-Noise Amplifier Employing a Novel Transformer Feedback Dual-Band Load , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Gang Liu,et al.  Broadband Millimeter-Wave LNAs (47–77 GHz and 70–140 GHz) Using a T-Type Matching Topology , 2013, IEEE Journal of Solid-State Circuits.

[20]  Quan Xue,et al.  A Broadband and Equivalent-Circuit Model for Millimeter-Wave On-Chip M:N Six-Port Transformers and Baluns , 2015, IEEE Transactions on Microwave Theory and Techniques.

[21]  Xiang Yi,et al.  Pole-Converging Intrastage Bandwidth Extension Technique for Wideband Amplifiers , 2017, IEEE Journal of Solid-State Circuits.

[22]  Hui-Dong Lee,et al.  A 28-GHz CMOS LNA with Stability-Enhanced Gm-Boosting Technique Using Transformers , 2019, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[23]  Corrado Carta,et al.  A Trimmable Cascaded Distributed Amplifier With 1.6 THz Gain-Bandwidth Product , 2015, IEEE Transactions on Terahertz Science and Technology.

[24]  Kun-You Lin,et al.  18-26 GHz low-noise amplifiers using 130- and 90-nm bulk CMOS technologies , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[25]  Huihua Liu,et al.  A 54.4–90 GHz Low-Noise Amplifier in 65-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[26]  S.P. Voinigescu,et al.  The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks , 2006, IEEE Journal of Solid-State Circuits.

[27]  P. Schvan,et al.  Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio , 2007, IEEE Journal of Solid-State Circuits.

[28]  Zhigong Wang,et al.  69–78 GHz ESD‐protected SiGe BiCMOS PA with 30 dB automatic level control for mm‐wave 5G applications , 2018, Electronics Letters.

[29]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[30]  A. Jahanian,et al.  A CMOS Distributed Amplifier With Distributed Active Input Balun Using GBW and Linearity Enhancing Techniques , 2012, IEEE Transactions on Microwave Theory and Techniques.

[31]  Kiat Seng Yeo,et al.  A Wideband Low Power Low-Noise Amplifier in CMOS Technology , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Duixian Liu,et al.  A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications , 2017, IEEE Journal of Solid-State Circuits.

[33]  Hsien-Shun Wu,et al.  A Dual-Band 10/24-GHz Amplifier Design Incorporating Dual-Frequency Complex Load Matching , 2012, IEEE Transactions on Microwave Theory and Techniques.

[34]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[35]  Yo-Sheng Lin,et al.  A 21–27 GHz CMOS wideband LNA with 9.3±1.3 dB gain and 103.9±8.1 ps group-delay using standard 0.18 μm CMOS technology , 2009, 2009 IEEE Radio and Wireless Symposium.

[36]  Hyundong Shin,et al.  8mW 17/24 GHz dual-band CMOS low-noise amplifier for ISM-band application , 2008 .