Modeling ionic conductivity and activation energy in garnet-structured solid electrolytes: The role of composition, grain boundaries and processing

[1]  Jong‐Won Lee,et al.  Tailoring grain boundary structures and chemistry of Li7La3Zr2O12 solid electrolytes for enhanced air stability , 2022, Energy Storage Materials.

[2]  Alankar Alankar,et al.  Machine learning elastic constants of multi-component alloys , 2021 .

[3]  V. Solov'ev,et al.  Machine learning analysis of microwave dielectric properties for seven structure types: The role of the processing and composition , 2021 .

[4]  Chenru Duan,et al.  Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal-Organic Frameworks , 2021, Journal of the American Chemical Society.

[5]  T. Penfold,et al.  Progress in the Theory of X-ray Spectroscopy: From Quantum Chemistry to Machine Learning and Ultrafast Dynamics. , 2021, The journal of physical chemistry. A.

[6]  J. Keith,et al.  Recent advances and future perspectives for automated parameterisation, Bayesian inference and machine learning in voltammetry. , 2021, Chemical communications.

[7]  Jakoah Brgoch,et al.  Opportunities for Next-Generation Luminescent Materials through Artificial Intelligence. , 2021, The journal of physical chemistry letters.

[8]  E. Olivetti,et al.  Data-driven materials research enabled by natural language processing and information extraction , 2020, Applied Physics Reviews.

[9]  Le Song,et al.  Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders , 2020, Chemistry of Materials.

[10]  Changguo Chen,et al.  The effect of LiAlSiO4 additions on lithium ionic conductivity of garnet Li6.75La3Zr1.75Nb0.25O12 prepared by solid-state synthesis , 2020 .

[11]  Jeongrae Kim,et al.  Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning , 2020, npj Computational Materials.

[12]  Li Lu,et al.  Microstructural and Electrochemical Properties of Al- and Ga-Doped Li7La3Zr2O12 Garnet Solid Electrolytes , 2020, ACS Applied Energy Materials.

[13]  Adelaide M. Nolan,et al.  Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors. , 2020, Chemical reviews.

[14]  R. Kobayashi,et al.  Exhaustive and informatics-aided search for fast Li-ion conductor with NASICON-type structure using material simulation and Bayesian optimization , 2020 .

[15]  Q. Shen,et al.  Dual regulation of Li + migration of Li 6.4 La 3 Zr 1.4 M 0.6 O 12 (M = Sb, Ta, Nb) by bottleneck size and bond length of M−O , 2020 .

[16]  Brian A. Rohr,et al.  Random forest machine learning models for interpretable X-ray absorption near-edge structure spectrum-property relationships , 2020, npj Computational Materials.

[17]  A. J. Morris,et al.  Al/Ga-Doped Li7La3Zr2O12 Garnets as Li-Ion Solid-State Battery Electrolytes: Atomistic Insights into Local Coordination Environments and Their Influence on 17O, 27Al, and 71Ga NMR Spectra , 2020, Journal of the American Chemical Society.

[18]  Feng Lin,et al.  Submicron Sized Nb Doped Lithium Garnet for High Ionic Conductivity Solid Electrolyte and Performance of All Solid-State Lithium Battery , 2019 .

[19]  K. Tsuda,et al.  Optimization of a Heterogeneous Ternary Li3PO4–Li3BO3–Li2SO4 Mixture for Li-Ion Conductivity by Machine Learning , 2019, The Journal of Physical Chemistry C.

[20]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[21]  Nongnuch Artrith Machine learning for the modeling of interfaces in energy storage and conversion materials , 2019, Journal of Physics: Energy.

[22]  Kaiming Liao,et al.  Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries , 2019, Journal of Alloys and Compounds.

[23]  Jodie L. Lutkenhaus,et al.  Design of multifunctional supercapacitor electrodes using an informatics approach , 2019, Molecular Systems Design & Engineering.

[24]  B. Gadermaier,et al.  Fast Rotational Dynamics in Argyrodite-Type Li6PS5X (X: Cl, Br, I) as Seen by 31P Nuclear Magnetic Relaxation—On Cation–Anion Coupled Transport in Thiophosphates , 2019, Chemistry of Materials.

[25]  C. Yuan,et al.  Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives , 2019, Materials Horizons.

[26]  Peter Lamp,et al.  High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors , 2019, iScience.

[27]  E. Reed,et al.  Quantifying the Search for Solid Li-Ion Electrolyte Materials by Anion: A Data-Driven Perspective , 2019, The Journal of Physical Chemistry C.

[28]  Junhao Li,et al.  Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball milling induced phase transition , 2019, Journal of Power Sources.

[29]  J. Carrasco,et al.  An investigation of the structural properties of Li and Na fast ion conductors using high-throughput bond-valence calculations and machine learning , 2019, Journal of Applied Crystallography.

[30]  V. Thangadurai,et al.  Microstructural and Electrochemical Properties of Alkaline Earth Metal-Doped Li Garnet-Type Solid Electrolytes Prepared by Solid-State Sintering and Spark Plasma Sintering Methods , 2019, ACS Applied Energy Materials.

[31]  Lucun Guo,et al.  Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries , 2019, Electrochimica Acta.

[32]  Gowoon Cheon,et al.  Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials , 2018, Chemistry of Materials.

[33]  Li-Min Wang,et al.  Lithium halide coating as an effective intergrain engineering for garnet-type solid electrolytes avoiding high temperature sintering , 2018, Electrochimica Acta.

[34]  Jake Graser,et al.  Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons , 2018 .

[35]  Alán Aspuru-Guzik,et al.  Accelerating the discovery of materials for clean energy in the era of smart automation , 2018, Nature Reviews Materials.

[36]  Jian Sun,et al.  Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries , 2018 .

[37]  J. Rupp,et al.  Glass‐Type Polyamorphism in Li‐Garnet Thin Film Solid State Battery Conductors , 2018 .

[38]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[39]  R. Uecker,et al.  Oxygen Vacancies in Fast Lithium-Ion Conducting Garnets , 2017 .

[40]  N. Kireeva,et al.  Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches. , 2017, Physical chemistry chemical physics : PCCP.

[41]  J. Maier,et al.  Ion conduction and redistribution at grain boundaries in oxide systems , 2017 .

[42]  J. Janek,et al.  Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). , 2017, Journal of the American Chemical Society.

[43]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[44]  L. Li,et al.  Effect of quenching method on Li ion conductivity of Li5La3Bi2O12 solid state electrolyte , 2017 .

[45]  A. Valencia,et al.  Information Retrieval and Text Mining Technologies for Chemistry. , 2017, Chemical reviews.

[46]  Xin Guo,et al.  Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. , 2017, ACS applied materials & interfaces.

[47]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[48]  A. Kyritsis,et al.  Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses , 2017 .

[49]  Xiaohong Zhu,et al.  Investigation of Mg2 +, Sc3 + and Zn2 + doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets , 2017 .

[50]  A. Yaroslavtsev Solid electrolytes: main prospects of research and development , 2016 .

[51]  Shen J. Dillon,et al.  The importance of grain boundary complexions in affecting physical properties of polycrystals , 2016 .

[52]  N. Imanishi,et al.  Phase relation, structure and ionic conductivity of Li7−x−3yAlyLa3Zr2−xTaxO12 , 2016 .

[53]  X. P. Wang,et al.  Mechanism of lithium ion diffusion in the hexad substituted Li7La3Zr2O12 solid electrolytes , 2016 .

[54]  R. Castro,et al.  Sintering and Nanostability: The Thermodynamic Perspective , 2016 .

[55]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[56]  Li Lu,et al.  High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ca ions , 2016 .

[57]  Lei Cheng,et al.  Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes , 2016, Chemistry of materials : a publication of the American Chemical Society.

[58]  M. Wilkening,et al.  Crystal Structure of Garnet-Related Li-Ion Conductor Li7–3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification? , 2016, Chemistry of materials : a publication of the American Chemical Society.

[59]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[60]  C. Nan,et al.  Oxide Electrolytes for Lithium Batteries , 2015 .

[61]  Cheng Chen,et al.  W-Doped Li7La3Zr2O12 Ceramic Electrolytes for Solid State Li-ion Batteries , 2015 .

[62]  Lei Cheng,et al.  Synthesis, Crystal Chemistry, and Electrochemical Properties of Li(7-2x)La3Zr(2-x)Mo(x)O12 (x = 0.1-0.4): Stabilization of the Cubic Garnet Polymorph via Substitution of Zr(4+) by Mo(6+). , 2015, Inorganic chemistry.

[63]  Daniel Hernández-Lobato,et al.  A Probabilistic Model for Dirty Multi-task Feature Selection , 2015, ICML.

[64]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[65]  M. Wilkening,et al.  Site Occupation of Ga and Al in Stabilized Cubic Li7–3(x+y)GaxAlyLa3Zr2O12 Garnets As Deduced from 27Al and 71Ga MAS NMR at Ultrahigh Magnetic Fields , 2015 .

[66]  Ashok Kumar Baral,et al.  Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. , 2015, The journal of physical chemistry letters.

[67]  Wolfgang G. Zeier,et al.  Structural limitations for optimizing garnet-type solid electrolytes: a perspective. , 2014, Dalton transactions.

[68]  Matthew W. Hoffman,et al.  Predictive Entropy Search for Efficient Global Optimization of Black-box Functions , 2014, NIPS.

[69]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[70]  Wolfgang G. Zeier,et al.  Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li₆MLa₂Ta₂O₁₂. , 2014, ACS applied materials & interfaces.

[71]  J. Maier Pushing Nanoionics to the Limits: Charge Carrier Chemistry in Extremely Small Systems , 2014 .

[72]  V. S. Pervov,et al.  On some problems of inorganic supramolecular chemistry. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[73]  L. Dhivya,et al.  Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets , 2013 .

[74]  R. Murugan,et al.  Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets , 2013 .

[75]  S. Manorama,et al.  Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. , 2013, Physical chemistry chemical physics : PCCP.

[76]  Khang Hoang,et al.  Origin of the structural phase transition in Li7La3Zr2O12. , 2012, Physical review letters.

[77]  J. Tarascon,et al.  Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application , 2012 .

[78]  Alex Graves,et al.  Supervised Sequence Labelling with Recurrent Neural Networks , 2012, Studies in Computational Intelligence.

[79]  Boris Kozinsky,et al.  From order to disorder: The structure of lithium-conducting garnets Li7 − xLa3TaxZr2 − xO12 (x = 0–2) , 2012 .

[80]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[81]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[82]  Hui Xie,et al.  Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12 , 2011 .

[83]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[84]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[85]  Y. Idemoto,et al.  Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 , 2011 .

[86]  J. Maier,et al.  Ionic and Electronic Conductivities of Li‐Argyrodites , 2010 .

[87]  Gisbert Schneider,et al.  Virtual screening: an endless staircase? , 2010, Nature Reviews Drug Discovery.

[88]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[89]  Venkataraman Thangadurai,et al.  Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2) , 2008 .

[90]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[91]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[92]  S. Alvarez,et al.  Distortions in octahedrally coordinated d0 transition metal oxides : A continuous symmetry measures approach , 2006 .

[93]  Venkataraman Thangadurai,et al.  Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12 , 2006 .

[94]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[95]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[96]  J. Kilner Fast anion transport in solids , 1983 .

[97]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[98]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[99]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[100]  Wei Lai,et al.  High Ionic Conductivity Lithium Garnet Oxides of Li7−xLa3Zr2−xTaxO12 Compositions , 2012 .

[101]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[102]  James G. Scott,et al.  Handling Sparsity via the Horseshoe , 2009, AISTATS.

[103]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[104]  S. Pejovnik,et al.  Interfaces in solid ionic conductors: Equilibrium and small signal picture , 1995 .

[105]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .