Estimation of Item and Person Parameters

The MIRT models presented in this book are useful from a theoretical perspective because they provide a model for the interaction between persons and test items. The different kinds of models represent different theoretical perspectives. For example, the compensatory and partially compensatory models provide two different conceptions of how levels on hypothetical constructs combine when applied to items that require some level on the constructs to determine the correct response. Although the theoretical models are interesting in their own right, the practical applications of the models require a means of estimating the item and person parameters for the models. Without practical procedures for parameter estimation, the usefulness of the models is very limited.

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[3]  R. D. Bock,et al.  High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature , 2005 .

[4]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .

[5]  George Engelhard,et al.  Full-Information Item Factor Analysis: Applications of EAP Scores , 1985 .

[6]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[7]  Stephen M. Stigler The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[8]  Daniel M. Bolt,et al.  Estimation of Compensatory and Noncompensatory Multidimensional Item Response Models Using Markov Chain Monte Carlo , 2003 .

[9]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[10]  Assessing the Dimensionality and Factor Structure of Multiple-Choice Exams , 2006 .

[11]  Frank B. Baker,et al.  Item Response Theory : Parameter Estimation Techniques, Second Edition , 2004 .

[12]  Timothy R. Miller Empirical Estimation of Standard Errors of Compensatory MIRT Model Parameters Obtained from the NOHARM Estimation Program. ACT Research Report Series. , 1991 .

[13]  Mark H. Moulton ONE USE OF A NON - UNIDIMENSIONAL SCALI NG (NOUS) MODEL TRANSFERRING INFORMATION ACROSS DIMENSIONS AND SUBSCALES , 2004 .

[14]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[15]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[17]  Albert Maydeu-Olivares,et al.  Multidimensional Item Response Theory Modeling of Binary Data: Large Sample Properties of NOHARM Estimates , 2001 .

[18]  R. Adams,et al.  The estimation of polytomous item response models with many dimensions , 2002 .

[19]  Roderick P. McDonald,et al.  Normal-Ogive Multidimensional Model , 1997 .

[20]  Richard J. Patz,et al.  A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .