Nitrogen storage capacity of phengitic muscovite and K-cymrite under the conditions of hot subduction and ultra high pressure metamorphism

[1]  A. Sokol,et al.  Raman spectroscopic study of the transformation of nitrogen‐bearing K‐cymrite during heating experiments: Origin of kokchetavite in high‐pressure metamorphic rocks , 2023, Journal of Raman Spectroscopy.

[2]  C. Langmuir,et al.  Sediment and ocean crust both melt at subduction zones , 2022, Earth and Planetary Science Letters.

[3]  R. Halama,et al.  The behaviour of nitrogen during subduction of oceanic crust: insights from in situ SIMS analyses of high-pressure rocks , 2022, Geochimica et Cosmochimica Acta.

[4]  A. Romanenko,et al.  Crystal structures of K-cymrite and kokchetavite from single-crystal X-ray diffraction , 2021 .

[5]  C. Manning,et al.  Subduction-Zone Fluids , 2020 .

[6]  A. Serdyuk,et al.  Melting and Parageneses of Global Subducting Water-Enriched Sediment in Closed and Open Systems: Experiment and Thermodynamic Modeling , 2020 .

[7]  I. Kupriyanov,et al.  Cymrite as mineral clathrate: An overlooked redox insensitive transporter of nitrogen in the mantle , 2020 .

[8]  B. Mysen Nitrogen in the Earth: abundance and transport , 2019, Progress in Earth and Planetary Science.

[9]  N. Daczko,et al.  The role of buoyancy in the fate of ultra-high-pressure eclogite , 2019, Scientific Reports.

[10]  S. Foley,et al.  Partitioning of nitrogen during melting and recycling in subduction zones and the evolution of atmospheric nitrogen , 2019, Chemical Geology.

[11]  T. Plank,et al.  Subducting carbon , 2019, Nature.

[12]  D. Sverjensky,et al.  Extended Deep Earth Water Model for predicting major element mantle metasomatism , 2019, Geochimica et Cosmochimica Acta.

[13]  D. Sverjensky Thermodynamic modelling of fluids from surficial to mantle conditions , 2019, Journal of the Geological Society.

[14]  J. Connolly,et al.  Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer , 2018, Earth and Planetary Science Letters.

[15]  M. Hirschmann Comparative deep Earth volatile cycles: The case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios , 2018, Earth and Planetary Science Letters.

[16]  E. Nigmatulina,et al.  Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea) , 2018, Minerals.

[17]  I. Kupriyanov,et al.  Synthesis of NH4-Substituted Muscovite at 6.3 GPa and 1000°C: Implications for Nitrogen Transport to the Earth’s Mantle , 2018, Doklady Earth Sciences.

[18]  B. Wunder,et al.  Partial melting of ultramafic granulites from Dronning Maud Land, Antarctica: Constraints from melt inclusions and thermodynamic modeling , 2018 .

[19]  M. Wiedenbeck,et al.  Nitrogen evolution within the Earth's atmosphere–mantle system assessed by recycling in subduction zones , 2018 .

[20]  T. Pettke,et al.  Silicate dissolution boosts the CO2 concentrations in subduction fluids , 2017, Nature Communications.

[21]  V. Shur,et al.  Forbidden mineral assemblage coesite‐disordered graphite in diamond‐bearing kyanite gneisses (Kokchetav Massif) , 2017 .

[22]  H. Marschall,et al.  Fluid-induced breakdown of white mica controls nitrogen transfer during fluid–rock interaction in subduction zones , 2017 .

[23]  A. Sokol,et al.  Carbon and Nitrogen Speciation in N-poor C-O-H-N Fluids at 6.3 GPa and 1100–1400 °C , 2017, Scientific Reports.

[24]  R. Dasgupta,et al.  CO2 content of andesitic melts at graphite-saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite , 2017, Contributions to Mineralogy and Petrology.

[25]  A. Sokol,et al.  Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa , 2017 .

[26]  C. Manning,et al.  Implications for metal and volatile cycles from the pH of subduction zone fluids , 2016, Nature.

[27]  J. Harnmeijer,et al.  Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels , 2016 .

[28]  R. Dasgupta,et al.  Pressure and temperature dependence of CO2 solubility in hydrous rhyolitic melt: implications for carbon transfer to mantle source of volcanic arcs via partial melt of subducting crustal lithologies , 2015, Contributions to Mineralogy and Petrology.

[29]  A. Sokol,et al.  High-temperature calibration of a multi-anvil high pressure apparatus , 2015 .

[30]  H. Keppler,et al.  Nitrogen distribution between aqueous fluids and silicate melts , 2015 .

[31]  D. Sverjensky,et al.  Important role for organic carbon in subduction-zone fluids in the deep carbon cycle , 2014 .

[32]  D. Sverjensky,et al.  Nitrogen speciation in upper mantle fluids and the origin of Earth's nitrogen-rich atmosphere , 2014 .

[33]  M. Scambelluri,et al.  Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle , 2014, International Journal of Earth Sciences.

[34]  H. Keppler,et al.  Nitrogen speciation in mantle and crustal fluids , 2014 .

[35]  A. Korsakov,et al.  Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: evidence from confocal Raman imaging , 2013 .

[36]  B. Marty,et al.  Nitrogen Isotopic Composition and Density of the Archean Atmosphere , 2013, Science.

[37]  V. Busigny,et al.  Nitrogen in the Silicate Earth: Speciation and Isotopic Behavior during Mineral–Fluid Interactions , 2013 .

[38]  M. Fogel,et al.  Nitrogen: Highly Volatile yet Surprisingly Compatible , 2013 .

[39]  H. Keppler,et al.  Nitrogen solubility in upper mantle minerals , 2013 .

[40]  J. Hermann,et al.  Deep Fluids in Subducted Continental Crust , 2013 .

[41]  A. Korsakov,et al.  K2O prograde zoning pattern in clinopyroxene from the Kokchetav diamond-grade metamorphic rocks: Missing part of metamorphic history and location of second critical end point for calc-silicate system , 2013 .

[42]  P. Shen,et al.  Oriented kokchetavite compound rods in clinopyroxene of Kokchetav ultrahigh-pressure rocks , 2013 .

[43]  K. Evans The redox budget of subduction zones , 2012 .

[44]  Q. Zhang,et al.  Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8.H2O) and its anhydrous form (kokchetavite) , 2012 .

[45]  P. Cartigny,et al.  Nitrogen isotopes in ophiolitic metagabbros: A re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere , 2011 .

[46]  M. Schmidt,et al.  The Melting of Carbonated Pelites from 70 to 700 km Depth , 2011 .

[47]  H. Massonne Phase relations of siliceous marbles at ultrahigh pressure based on thermodynamic calculations: examples from the Kokchetav Massif, Kazakhstan and the Sulu terrane, China , 2011 .

[48]  K. Fischer,et al.  he global range of subduction zone thermal models , 2010 .

[49]  Yuri N. Palyanov,et al.  Effect of Nitrogen Impurity on Diamond Crystal Growth Processes , 2010 .

[50]  G. Bebout,et al.  Nitrogen recycling in subducted oceanic lithosphere: The record in high- and ultrahigh-pressure metabasaltic rocks , 2010 .

[51]  R. Wirth,et al.  Ammonium-bearing clinopyroxene: A potential nitrogen reservoir in the Earth's mantle , 2010 .

[52]  J. Moyen High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature” , 2009 .

[53]  W. Heinrich,et al.  High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth’s mantle , 2009 .

[54]  S. Planke,et al.  Nitrogen geochemistry as a tracer of fluid flow in a hydrothermal vent complex in the Karoo Basin, South Africa , 2008 .

[55]  Olaf Hollricher,et al.  High-resolution, high-speed confocal Raman imaging , 2008 .

[56]  J. Hermann,et al.  Sediment Melts at Sub-arc Depths: an Experimental Study , 2008 .

[57]  M. Moore,et al.  Ammonia–water ice laboratory studies relevant to outer Solar System surfaces , 2007 .

[58]  D. Hilton,et al.  Tracing Nitrogen in Volcanic and Geothermal Volatiles from the Nicaraguan Volcanic Front , 2006 .

[59]  A. C. Withers,et al.  Heat capacity and phase equilibria of hollandite polymorph of KAlSi3O8 , 2006 .

[60]  Long Li,et al.  Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity , 2005 .

[61]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[62]  M. Schmidt,et al.  Melting and dissolution of subducting crust at high pressures: the key role of white mica , 2004 .

[63]  P. Cartigny,et al.  Quantitative analysis of ammonium in biotite using infrared spectroscopy , 2004 .

[64]  P. Shen,et al.  Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane , 2004 .

[65]  G. Harlow,et al.  Status report on stability of K-rich phases at mantle conditions , 2004 .

[66]  W. Heinrich,et al.  Experimental determination of the ammonium partitioning among muscovite, K-feldspar, and aqueous chloride solutions , 2004 .

[67]  P. Cartigny,et al.  Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe) , 2003 .

[68]  P. Cartigny,et al.  Ammonium quantification in muscovite by infrared spectroscopy , 2003 .

[69]  P. O'Brien,et al.  High‐pressure granulites: formation, recovery of peak conditions and implications for tectonics , 2003 .

[70]  N. Sobolev,et al.  Garnet-biotite-clinozoisite gneiss: a new type of diamondiferous metamorphic rock from the Kokchetav Massif , 2002 .

[71]  S. Poli,et al.  Petrology of subducted slabs , 2002 .

[72]  R. Compagnoni,et al.  Jadeite with the Ca-Eskola molecule from an ultra-high pressure metagranodiorite, Dora-Maira Massif, Western Alps , 2002 .

[73]  E. Mposkos,et al.  Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established , 2001 .

[74]  J. Hermann,et al.  Experimental constraints on high pressure melting in subducted crust , 2001 .

[75]  D. Harlov,et al.  Characterisation of tobelite (NH4)Al2[AlSi3O10](OH)2 and ND4-tobelite (ND4)Al2[AlSi3O10](OD)2 using IR spectroscopy and Rietveld refinement of XRD spectra , 2001 .

[76]  J. Hermann,et al.  Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan) , 2001 .

[77]  Marie C. Johnson,et al.  Dehydration and melting experiments constrain the fate of subducted sediments , 2000 .

[78]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[79]  I. Parsons,et al.  The breakdown of potassium feldspar at high water pressures , 1998 .

[80]  N. Chatterjee,et al.  Synthesis, structure, thermodynamic properties, and stability relations of K-cymrite, K[AlSi3O8]·H2O , 1997 .

[81]  B. Wood,et al.  Experimental measurements of the fugacity of C02 and graphite/diamond stability from 35 to 77 kbar at 925 to 1650°C , 1997 .

[82]  J. Holloway,et al.  The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments , 1996 .

[83]  M. Fogel,et al.  Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: Implications for metamorphic devolatilization history , 1992 .

[84]  Yuuko Itihara,et al.  Distribution of ammonium in minerals of metamorphic and granitic rocks , 1981 .

[85]  W. Vedder Ammonium in moscovite , 1965 .

[86]  E. Cottrell,et al.  Warm and oxidizing slabs limit ingassing efficiency of nitrogen to the mantle , 2021 .

[87]  G. Bebout,et al.  Pathways for nitrogen cycling in Earth's crust and upper mantle: A review and new results for microporous beryl and cordierite , 2016 .

[88]  R. Angel,et al.  Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not evidence for ultrahigh-pressure conditions , 2015, Contributions to Mineralogy and Petrology.

[89]  K. Litasov,et al.  An integrate model of subduction: contributions from geology, experimental petrology, and seismic tomography , 2015 .

[90]  T. Plank 4.17 – The Chemical Composition of Subducting Sediments , 2014 .

[91]  R. Dasgupta Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time , 2013 .

[92]  S. Foley A Reappraisal of Redox Melting in the Earth’s Mantle as a Function of Tectonic Setting and Time , 2011 .

[93]  M. Ghiorso,et al.  The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases , 1990 .

[94]  V. Farmer The Layer Silicates , 1974 .