The Effect of Specimen Thickness on the Tearing Energy of a Gum Vulcanizate

Abstract We have examined the effect of thickness on the critical tearing energy of a simple gum vulcanizate of SBR in pure shear. Laboratory experiments and finite-element calculations agree that the tearing energy that is measured with a pure-shear specimen increases with the thickness of the specimen. Laboratory measurements indicate that the deformation for crack growth in a pure-shear specimen increases with the thickness of the specimen. Finite-element calculations show that the energy available for release at a given deformation also increases with thickness in the range from t=1.4 mm to t=14 mm. Experiments show that the crtical tearing energy varies linearly with thickness in the range t=0.7 mm to t=2.7 mm. The effect of thickness on the tearing energy was also studied by calculating the J-integral at various points of the crack through the thickness of the pure-shear specimen. In general, the J-integral calculated at the surface of the specimen can be higher than the J-integral calculated at the...