THE EPOCH OF DISK SETTLING: z ∼ 1 TO NOW

We present evidence from a sample of 544 galaxies from the DEEP2 Survey for evolution of the internal kinematics of blue galaxies with stellar masses ranging 8.0 < log M *(M ?) < 10.7 over 0.2 < z < 1.2. DEEP2 provides galaxy spectra and Hubble imaging from which we measure emission-line kinematics and galaxy inclinations, respectively. Our large sample allows us to overcome scatter intrinsic to galaxy properties in order to examine trends in kinematics. We find that at a fixed stellar mass, galaxies systematically decrease in disordered motions and increase in rotation velocity and potential well depth with time. Massive galaxies are the most well ordered at all times examined, with higher rotation velocities and less disordered motions than less massive galaxies. We quantify disordered motions with an integrated gas velocity dispersion corrected for beam smearing (? g ). It is unlike the typical pressure-supported velocity dispersion measured for early type galaxies and galaxy bulges. Because both seeing and the width of our spectral slits comprise a significant fraction of the galaxy sizes, ? g integrates over velocity gradients on large scales which can correspond to non-ordered gas kinematics. We compile measurements of galaxy kinematics from the literature over 1.2 < z < 3.8 and do not find any trends with redshift, likely for the most part, because these data sets are biased toward the most highly star-forming systems. In summary, over the last ~8 billion years since z = 1.2, blue galaxies evolve from disordered to ordered systems as they settle to become the rotation-dominated disk galaxies observed in the universe today, with the most massive galaxies being the most evolved at any time.

[1]  M. Rees,et al.  Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .

[2]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[3]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[4]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[5]  B. Santiago,et al.  The morphology of faint galaxies in Medium Deep Survey images using WFPC2 , 1994 .

[6]  K. I. Kellermann,et al.  Identification of faint radio sources with optically luminous interacting disk galaxies , 1995, Nature.

[7]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[8]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[9]  Karl Glazebrook,et al.  The morphologies of distant galaxies. II. Classifications from the Hubble Space Telescope medium deep survey , 1996 .

[10]  R. Abraham,et al.  The Morphological Evolution of Galaxies , 2001, Science.

[11]  N. Vogt,et al.  The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip , 2002, astro-ph/0205025.

[12]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[13]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[14]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[15]  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 11/26/03 THE KINEMATICS OF MORPHOLOGICALLY SELECTED Z ∼ 2 GALAXIES IN THE GOODS-NORTH FIELD 1 , 2004 .

[16]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[17]  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[18]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[19]  R. Ellis,et al.  Evolution of the Near-Infrared Tully-Fisher Relation: Constraints on the Relationship between the Stellar and Total Masses of Disk Galaxies since z ~ 1 , 2005, astro-ph/0503597.

[20]  N. Vogt,et al.  A Survey of Galaxy Kinematics to Z ∼ 1 in the Tkrs/goods-n Field. I. Rotation and Dispersion Properties , 2006 .

[21]  AEGIS: Enhancement of Dust-enshrouded Star Formation in Close Galaxy Pairs and Merging Galaxies up to z ~ 1* , 2006, astro-ph/0607272.

[22]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[23]  H. Flores,et al.  3D spectroscopy with VLT/GIRAFFE. I. The true Tully Fisher relationship at z ̃ 0.6 , 2006, astro-ph/0603563.

[24]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[25]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[26]  N. Vogt,et al.  A Survey of Galaxy Kinematics to Z ∼ 1 in the Tkrs/goods-n Field. Ii. Evolution in the Tully-fisher Relation , 2006 .

[27]  B. Weiner,et al.  The Stellar Mass Tully-Fisher Relation to z = 1.2 from AEGIS , 2006, astro-ph/0702643.

[28]  J. Brinkmann,et al.  The Tully-Fisher Relation and its Residuals for a Broadly Selected Sample of Galaxies , 2006, astro-ph/0608472.

[29]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[30]  B. Weiner,et al.  Dark and Baryonic Matter in Bright Spiral Galaxies. II. Radial Distributions for 34 Galaxies , 2006, astro-ph/0602027.

[31]  H. Rix,et al.  The stellar masses of 25 000 galaxies at 0.2 ≤ z ≤ 1.0 estimated by the COMBO-17 survey , 2006 .

[32]  M. McElwain,et al.  Integral Field Spectroscopy of a Candidate Disk Galaxy at z ~ 1.5 Using Laser Guide Star Adaptive Optics , 2006, astro-ph/0612199.

[33]  3D spectroscopy with VLT/GIRAFFE IV. Angular momentum and dynamical support of intermediate redshift galaxies , 2007, astro-ph/0701723.

[34]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[35]  H. F. Astrophysics,et al.  Dynamical properties of a large young disk galaxy at z = 2.03 , 2008, 0806.3369.

[36]  J. Gach,et al.  GHASP: an Hα kinematic survey of spiral and irregular galaxies - VI. New Hα data cubes for 108 galaxies , 2008, 0805.0976.

[37]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[38]  A. Kembhavi,et al.  IMAGES - III. The evolution of the near-infrared Tully-Fisher relation over the last 6 Gyr , 2008, 0803.3002.

[39]  D. Elbaz,et al.  Observations and modeling of a clumpy galaxy at z = 1.6 - Spectroscopic clues to the origin and evolution of chain galaxies , 2008, 0803.3831.

[40]  B. J. Weiner,et al.  accepted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE EVOLUTION OF GALAXY MERGERS AND MORPHOLOGY AT Z < 1.2 IN THE EXTENDED GROTH STRIP , 2007 .

[41]  Benoit Neichel,et al.  IMAGES (cid:1) . I. Strong evolution of galaxy kinematics since z = 1 , 2008 .

[42]  B. Guiderdoni,et al.  IMAGES. II. A surprisingly low fraction of undisturbed rotating spiral disks at z ~ 0.6 The morpho-k , 2008, 0803.2370.

[43]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[44]  James E. Larkin,et al.  DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0810.5599.

[45]  D. Thompson,et al.  THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z ∼ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY , 2009, 0910.5720.

[46]  M. Martig,et al.  THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT , 2009, 0910.3677.

[47]  P. Buschkamp,et al.  THE SINS SURVEY: MODELING THE DYNAMICS OF z ∼ 2 GALAXIES AND THE HIGH-z TULLY–FISHER RELATION , 2009, 0902.4701.

[48]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[49]  C. Brook,et al.  Forming a large disc galaxy from a z < 1 major merger , 2008, 0812.0379.

[50]  Integral field spectroscopy with SINFONI of VVDS galaxies I. Galaxy dynamics and mass assembly at 1.2 < z < 1.6 , 2009, 0903.1216.

[51]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[52]  J. Silk,et al.  GLOBAL STAR FORMATION REVISITED , 2009, 0905.2180.

[53]  F. Hammer,et al.  The baryonic content and Tully-Fisher relation at z~0.6 , 2009, 0903.3961.

[54]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[55]  J. Wadsley,et al.  THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.

[56]  A. Dekel,et al.  High-redshift clumpy discs and bulges in cosmological simulations , 2009, 0907.3271.

[57]  A. Bunker,et al.  2D kinematics and physical properties of z ∼ 3 star-forming galaxies , 2009, 0909.1386.

[58]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[59]  C. Balkowski,et al.  Evidence for strong dynamical evolution in disc galaxies through the last 11 Gyr. GHASP VIII – a local reference sample of rotating disc galaxies for high‐redshift studies , 2009, 0904.3891.

[60]  B. Gibson,et al.  Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum , 2010, 1010.1004.

[61]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[62]  B. Weiner,et al.  EVOLUTION OF THE STELLAR MASS TULLY–FISHER RELATION IN DISK GALAXY MERGER SIMULATIONS , 2009, 0902.0566.

[63]  G. Cresci,et al.  HOW WELL CAN WE MEASURE THE INTRINSIC VELOCITY DISPERSION OF DISTANT DISK GALAXIES? , 2011, 1108.0285.

[64]  R. Giovanelli,et al.  The GALEX Arecibo SDSS Survey – IV. Baryonic mass–velocity–size relations of massive galaxies , 2011, 1110.4226.

[65]  A. Cimatti,et al.  Dynamical properties of AMAZE and LSD galaxies from gas kinematics and the Tully-Fisher relation at z~3 , 2010, 1007.4180.

[66]  M. Sullivan,et al.  THE ASSEMBLY HISTORY OF DISK GALAXIES. I. THE TULLY–FISHER RELATION TO z ≃ 1.3 FROM DEEP EXPOSURES WITH DEIMOS , 2011, 1102.3911.

[67]  Susan A. Kassin,et al.  The angular momentum of baryons and dark matter halos revisited , 2011 .

[68]  B. Garilli,et al.  MASSIV: Mass Assembly Survey with SINFONI in VVDS - IV. Fundamental relations of star-forming galaxies at 1 < z < 1.6 , 2012, 1202.3107.

[69]  R. Teyssier,et al.  A DIVERSITY OF PROGENITORS AND HISTORIES FOR ISOLATED SPIRAL GALAXIES , 2012, 1201.1079.

[70]  M. Putman,et al.  The IGM/Galaxy Connection , 2012 .

[71]  C. Blake,et al.  Scaling relations of star-forming regions: from kpc-sized clumps to H ii regions , 2012, 1203.0309.

[72]  M. Sullivan,et al.  THE ASSEMBLY HISTORY OF DISK GALAXIES. II. PROBING THE EMERGING TULLY–FISHER RELATION DURING 1 < z < 1.7 , 2012, 1201.4386.

[73]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.