Bäcklund transformation and Wronskian solitons for the (2+1)-dimensional Nizhnik–Novikov–Veselov equations

Abstract Korteweg–de Vries-type equations are seen to describe the shallow water waves, stratified internal waves, ion-acoustic waves, plasma physics and lattice dynamics, an isotropic extension of which are the ( 2 + 1 ) -dimensional Nizhnik–Novikov–Veselov equations. Hereby, based on the Hirota bilinear method and symbolic computation, we derive the bilinear form and Backlund transformation for such an extension. N -soliton solutions in the Wronskian form are given, and it can be verified that the Backlund transformation can connect the ( N − 1 ) - and N -soliton solutions. Solitonic propagation and collision are discussed: the larger-amplitude soliton moves faster and then overtakes the smaller one. After the collisions, the solitons keep their original shapes and velocities invariant except for the phase shift. Collisions among the two and three solitons are all elastic.

[1]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[2]  Bo Tian,et al.  Comment on ``Exact solutions of cylindrical and spherical dust ion acoustic waves'' [Phys. Plasmas 10, 4162 (2003)] , 2005 .

[3]  B. Konopelchenko On solutions of the shape equation for membranes and strings , 1997 .

[4]  S. Lou,et al.  Special solutions from the variable separation approach: the Davey - Stewartson equation , 1996 .

[5]  Y. Ohta Pfaffian Solutions for the Veselov-Novikov Equation , 1992 .

[6]  U. Pinkall,et al.  Integrable deformations of affine surfaces via the Nizhnik-Veselov-Novikov equation , 1998 .

[7]  Shu-fang Deng,et al.  The multisoliton solutions for the nonisospectral mKP equation , 2007 .

[8]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[9]  Ying Liu,et al.  Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  S. Lou,et al.  Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems , 2003 .

[11]  Bo Tian,et al.  Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361 (2007) 520] , 2007 .

[12]  Ying Liu,et al.  Soliton management for a variable-coefficient modified Korteweg-de Vries equation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Bo Tian,et al.  Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation , 2009 .

[14]  A. Jeffrey,et al.  Weak Nonlinear Dispersive Waves: A Discussion Centered Around the Korteweg–De Vries Equation , 1972 .

[15]  Ying Liu,et al.  Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  M. Boiti,et al.  On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions , 1986 .

[17]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[18]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[19]  M. Wadati,et al.  The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .

[20]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[21]  R. Radha,et al.  Singularity analysis and localized coherent structures in (2+1)‐dimensional generalized Korteweg–de Vries equations , 1994 .

[22]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[23]  Tian Bo,et al.  Bäcklund Transformation and Multisoliton Solutions in Terms of Wronskian Determinant for (2+1)-Dimensional Breaking Soliton Equations with Symbolic Computation , 2010 .

[24]  Wen-Xiu Ma,et al.  Darboux transformations of classical Boussinesq system and its new solutions , 2000 .

[25]  Shu-fang Deng,et al.  Exact Solutions for the Nonisospectral Kadomtshev–Petviashvili Equation , 2005 .

[26]  A. Veselov,et al.  Two-dimensional Schro¨dinger operator: inverse scattering transform and evolutional equations , 1986 .

[27]  Lou Sen-Yue,et al.  Some Special Types of Multisoliton Solutions of the Nizhnik-Novikov-Vesselov Equation , 2000 .

[28]  N. C. Freeman Soliton Solutions of Non-linear Evolution Equations , 1984 .

[29]  Yi-Tian Gao,et al.  Amplification of nonautonomous solitons in the Bose-Einstein condensates and nonlinear optics , 2011 .

[30]  Junkichi Satsuma,et al.  A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations , 1979 .

[31]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[32]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[33]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[34]  J. Nimmo,et al.  A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .

[35]  J. Nimmo,et al.  A bilinear Bäcklund transformation for the nonlinear Schrödinger equation , 1983 .

[36]  Yi-Tian Gao,et al.  Painlevé analysis, Lax pair, Bäcklund transformation and multi-soliton solutions for a generalized variable-coefficient KdV–mKdV equation in fluids and plasmas , 2012 .

[37]  Ryogo Hirota,et al.  Soliton Solutions of a Coupled Modified KdV Equations , 1997 .

[38]  Chen Yong,et al.  Binary Bell Polynomials Approach to Generalized Nizhnik—Novikov—Veselov Equation , 2011 .