OZCAR: The French Network of Critical Zone Observatories

This contribution aims at presenting the principles that underlined the creation of the OZCAR research infras- tructure, gathering various Critical Zone Observatories in France, and the scientific questions that drives the observation settings. The Critical Zone includes the fine zone between the lower atmosphere at the top of the canopy down to the bedrock-soil interface. This lithosphere-atmosphere boundary is critical for the availability of life-sustaining resources and critical for humanity because this is the zone where we live, where we build our cities, from which we extract our food and our water and where we release most of our wastes. This is the fragile zone on which the natural ecosystem relies because this is where nutrients are being released from the rocks. OZCAR is a distributed research infrastructure gathering instrumented sites and catchments on continental surfaces all dedicated to the observation and monitoring of the different compartments of the Critical Zone at the national scale. All these observatories (more that 40) were all built up on specific questions (acid deposition, flood prediction, urban hydrology. . . ), some of them more than 50 years ago, but they have all in common to be highly instrumented, permanently funded as infrastructures. They all share the same overarching goal of understanding and predicting the Critical Zone in a changing world. OZCAR gathers instrumented catchments, hydrogeological sites, peatlands, glacier and permafrost regions and a spatial observatory under the common umbrella of understanding water and biogeochemical cycles and the associated fluxes of energy by using natural gradients and experimentation. Based on the collaboration with Southern Countries, OZCAR’s sites have a global coverage including tropical areas and high mountainous regions in the Andes and the Himalaya. OZCAR benefits from a French investments project called CRITEX (Innovative equipment for the critical zone, https://www.critex.fr/critex-3/observatories/ ) that is centered on the development and deployment of innovative instrumentation in the sites. OZCAR was launched in 2016 under the leadership of the French Ministry in charge of Higher Education and Research, assembling all French Research Institutions involved in environmental studies and with the ambition of facilitating interdisciplinary research in terrestrial surfaces, stimulating instrumental development and being visible at the international level. The paper will presents the main common scientific questions, challenges in terms of instrumentation and experimentation deployment, in particular in terms of co-location of sites, data base and modelling activities that the OZCAR network plan to address in the next years.

Isabelle Braud | Tanguy Le Borgne | Tiphaine Tallec | Delphine Six | Guillaume Nord | P. Allemand | C. Marais-Sicre | B. Boudevillain | P. Wagnon | F. Habets | L. Ravanel | P. Deline | O. Ribolzi | N. Silvera | M. Grippa | J. Demarty | L. Longuevergne | H. Celle-Jeanton | B. Cappelaere | S. Galle | H. Jourde | V. Simonneaux | Y. Copard | G. Tallec | I. Gouttevin | S. Anquetin | O. Bour | J. Dreuzy | D. Raclot | G. Gruau | J. Ezzahar | G. Panthou | N. Massei | C. Peugeot | P. Davy | S. Audry | J. Riotte | O. Fovet | J. Molénat | R. Zitouna | J. Seidel | I. Braud | F. Branger | A. Francez | Y. Lagadeuc | W. Lavado | C. Gascuel | A. Jardani | J. Join | G. Delrieu | L. Boithias | J. Sánchez-Pérez | F. Karbou | M. Pierret | D. Six | T. Le Borgne | R. Lastennet | F. Chabaux | I. Moussa | F. Rejiba | E. Thibert | B. Arfib | S. Morin | Xavier Bodin | C. Legoût | H. Bellot | C. Emblanch | G. Porel | V. Comte | G. Nord | C. Batiot | P. Brunet | C. Champollion | P. Flammarion | B. Cáceres | A. Soruco | Y. Lejeune | A. Rabatel | S. Binet | K. Chalikakis | H. Bessiere | D. Viville | Fatima Laggoun-Défarge | F. Naaim-Bouvet | P. Moreira-Turcq | M. Sekhar | J. Malet | L. Jeanneau | N. Mazzilli | Jérôme Gaillardet | O. Sengtaheuanghoung | Fatim Hankard | M. Faucheux | J. N. Ngoupayou | P. Floury | É. Gayer | G. Picard | C. Genthon | L. Gandois | N. Le Moigne | E. Lawin | Hélène Pauwels | Catherine Galy | C. Vincent | C. Marlin | M. Dumont | M. Gérard | C. Dessert | J. Gaillardet | D. Gilbert | L. Arnaud | L. Ruiz | L. Gourcy | A. Lucas | J. Probst | S. Sauvage | P. Martín | M. Steinmann | M. Fournier | J. Lions | C. Le Bouteiller | D. Labat | A. Arènes | J. Marechal | A. Probst | J. Martins | F. Hankard | N. Dorfliger | C. Galy | S. Gogo | F. Laggoun | T. Tallec | C. Valentin | G. Abril | N. Arnaud | P. Arnaud | A. Battais | E. Bernard | C. Bertrand | J. Bodin | J. Bouchez | J. J. Braun | D. Calmels | C. Cotel | M. Esteves | V. Favier | N. Filizola | E. Lajeunesse | T. Lebel | E. Le Meur | J. M. Martinez | A. Mauclerc | E. Mougin | P. Rene | A. Riviere | H. Robain | W. santini | P. Schoeneich | D. Lao | C. Galy | J. Maréchal | H. Celle‐Jeanton | E. Le Meur

[1]  Thomas Kalbacher,et al.  Reactive transport codes for subsurface environmental simulation , 2015, Computational Geosciences.

[2]  Xavier Chavanne,et al.  Presentation of a Complex Permittivity-Meter with Applications for Sensing the Moisture and Salinity of a Porous Media , 2014, Sensors.

[3]  Toni Feder Earth's skin is an interdisciplinary laboratory , 2018 .

[4]  Erwin Zehe,et al.  On hydrological predictability , 2005 .

[5]  G. Blöschl,et al.  Socio‐hydrology: A new science of people and water , 2012 .

[6]  S. Galle,et al.  Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin) , 2013 .

[7]  Richard P. Hooper,et al.  Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology , 2007 .

[8]  J. Banfield,et al.  The East River, Colorado, Watershed: A Mountainous Community Testbed for Improving Predictive Understanding of Multiscale Hydrological–Biogeochemical Dynamics , 2018 .

[9]  L. Arnaud,et al.  Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation , 2011, Journal of Glaciology.

[10]  Frédérique Seyler,et al.  Stage‐discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin , 2016 .

[11]  Jorge Gironás,et al.  A GIS-based urban and peri-urban landscape representation toolbox for hydrological distributed modeling , 2017, Environ. Model. Softw..

[12]  T. Robinson,et al.  Sustainable Development Goals , 2016 .

[13]  Scott D. Peckham,et al.  A component-based approach to integrated modeling in the geosciences: The design of CSDMS , 2013, Comput. Geosci..

[14]  D. Richter,et al.  'One physical system': Tansley's ecosystem as Earth's critical zone. , 2015, The New phytologist.

[15]  Vincent Guinot,et al.  KarstMod: A modelling platform for rainfall - discharge analysis and modelling dedicated to karst systems , 2017, Environ. Model. Softw..

[16]  Jeffery S. Horsburgh,et al.  Components of an environmental observatory information system , 2011, Comput. Geosci..

[17]  G. Giraud,et al.  Operational implementation and evaluation of a blowing snow scheme for avalanche hazard forecasting , 2018 .

[18]  Hubert H. G. Savenije,et al.  HESS Opinions Catchments as meta-organisms – a new blueprint for hydrological modelling , 2017 .

[19]  Reed M. Maxwell,et al.  On the Development of a Coupled Land Surface and Groundwater Model , 2004 .

[20]  Jeffery S. Horsburgh,et al.  Observations Data Model 2: A community information model for spatially discrete Earth observations , 2016, Environ. Model. Softw..

[21]  B. Latour,et al.  Giving depth to the surface: An exercise in the Gaia-graphy of critical zones , 2018 .

[22]  P. Podwojewski,et al.  Runoff and sediment losses from 27 upland catchments in Southeast Asia: impact of rapid land use changes and conservation practices. , 2008 .

[23]  R. Moussa,et al.  MHYDAS‐Erosion: a distributed single‐storm water erosion model for agricultural catchments , 2011 .

[24]  J. Cohard,et al.  Water storage changes as a marker for base flow generation processes in a tropical humid basement catchment (Benin): Insights from hybrid gravimetry , 2015 .

[25]  B. Boudevillain,et al.  A high-resolution rainfall re-analysis based on radar–raingauge merging in the Cévennes-Vivarais region, France , 2016 .

[26]  New Opportunities for Critical Zone Science , 2018 .

[27]  B. Boudevillain,et al.  A High Space-Time Resolution Dataset Linking Meteorological Forcing and Hydro-Sedimentary Response in a Mesoscale Mediterranean Catchment (Auzon) of the Ardèche Region, France , 2015 .

[28]  Mary P Anderson,et al.  Heat as a Ground Water Tracer , 2005, Ground water.

[29]  Christopher J. Duffy,et al.  A tightly coupled GIS and distributed hydrologic modeling framework , 2014, Environ. Model. Softw..

[30]  A. Dufresne,et al.  Impact of climate changes during the last 5 million years on groundwater in basement aquifers , 2015, Scientific Reports.

[31]  Florence Naaim-Bouvet,et al.  Evaluation of the FlowCapt Acoustic Sensor for the Aeolian Transport of Snow , 2015 .

[32]  Praveen Kumar,et al.  Interaction Between Ecohydrologic Dynamics and Microtopographic Variability Under Climate Change , 2017 .

[33]  R. Maxwell,et al.  Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model , 2006 .

[34]  S. P. Anderson,et al.  Proposed initiative would study Earth's weathering engine , 2004 .

[35]  Partha Dasgupta,et al.  Living beyond our means : natural assets and human well-being, statement form the board , 2005 .

[36]  Jérôme Le Coz,et al.  Gauging extreme floods on YouTube: application of LSPIV to home movies for the post‐event determination of stream discharges , 2016 .

[37]  Victor F. Bense,et al.  Active‐distributed temperature sensing to continuously quantify vertical flow in boreholes , 2014 .

[38]  S. Galle,et al.  Hydrological functioning of western African inland valleys explored with a critical zone model , 2018, Hydrology and Earth System Sciences.

[39]  N. Flipo,et al.  Continental hydrosystem modelling: the concept of nested stream–aquifer interfaces , 2014 .

[40]  B. Latour Geochemistry of the Earth ’ s Surface meeting , GES-10 Some advantages of the notion of “ Critical Zone ” for Geopolitics , 2014 .

[41]  N. West,et al.  CZ-tope at Susquehanna Shale Hills CZO: Synthesizing multiple isotope proxies to elucidate Critical Zone processes across timescales in a temperate forested landscape , 2016 .

[42]  Olivier Rouchon,et al.  Paper Template For Ipres 2010: Quality Insurance Through Business Process Management In A French Archive , 2010, iPRES.

[43]  Yolanda Gil,et al.  Cyber-Innovated Watershed Research at the Shale Hills Critical Zone Observatory , 2016, IEEE Systems Journal.

[44]  Christopher J. Duffy,et al.  Designing a Suite of Models to Explore Critical Zone Function , 2014, Procedia Earth and Planetary Science.

[45]  J. Kirchner Catchments as simple dynamical systems: Catchment characterization, rainfall‐runoff modeling, and doing hydrology backward , 2009 .

[46]  M. Sivapalan Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? , 2003 .

[47]  Guillaume Brissebrat,et al.  The RBV metadata catalog , 2014 .

[48]  Markku Kulmala,et al.  Build a global Earth observatory , 2018, Nature.

[49]  Jeffrey J. McDonnell,et al.  Beyond the water balance , 2017 .

[50]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[51]  Jeffery S. Horsburgh,et al.  HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis , 2012, Environ. Model. Softw..

[52]  W. McDowell,et al.  The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. , 2018, The Science of the total environment.

[53]  Irena Hajnsek,et al.  A Network of Terrestrial Environmental Observatories in Germany , 2011 .

[54]  W. Easterling Climate change and the adequacy of food and timber in the 21st century , 2007, Proceedings of the National Academy of Sciences.

[55]  Jeffery S. Horsburgh,et al.  Enhancing Interoperability and Capabilities of Earth Science Data using the Observations Data Model 2 (ODM2) , 2017 .

[56]  D. Poncet,et al.  An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models , 2012 .

[57]  David G. Tarboton,et al.  The Initial Design of Data Sharing Infrastructure for the Critical Zone Observatory , 2011 .

[58]  Seong Jin Noh,et al.  Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities , 2012 .

[59]  Laurent Arnaud,et al.  Design of a scanning laser meter for monitoring the spatio-temporalevolution of snow depth and its application in the Alps and in Antarctica , 2016 .

[60]  Praveen Kumar,et al.  Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling , 2018 .

[61]  Jeffery S. Horsburgh,et al.  An integrated system for publishing environmental observations data , 2009, Environ. Model. Softw..

[62]  L. Aquilina,et al.  Contribution of age data to the characterization of complex aquifers , 2012 .

[63]  Kuolin Hsu,et al.  Artificial Neural Network Modeling of the Rainfall‐Runoff Process , 1995 .

[64]  Jeffery S. Horsburgh,et al.  A relational model for environmental and water resources data , 2008 .

[65]  Sandrine Anquetin,et al.  Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: Regional modelling study and process understanding , 2016 .

[66]  L. Aquilina,et al.  Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow. , 2017, Environmental science & technology.

[67]  Isabelle Braud,et al.  Assessing anthropogenic influence on the hydrology of small peri-urban catchments: Development of the object-oriented PUMMA model by integrating urban and rural hydrological models , 2014 .

[68]  Tim Wardlaw,et al.  The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory. , 2016, The Science of the total environment.

[69]  Guido Zolezzi,et al.  Field assessment of noncontact stream gauging using portable surface velocity radars (SVR) , 2016 .

[70]  P. Goderniaux,et al.  Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments , 2013 .

[71]  Henry Lin,et al.  Critical Zone Research and Observatories: Current Status and Future Perspectives , 2016 .

[72]  Olivier Bour,et al.  Passive temperature tomography experiments to characterize transmissivity and connectivity of preferential flow paths in fractured media , 2014 .

[73]  Guillaume Bertrand,et al.  Evaluation of pharmaceuticals in surface water: reliability of PECs compared to MECs. , 2014, Environment international.

[74]  L. Longuevergne,et al.  2D characterization of near-surface V P/V S: surface-wave dispersion inversion versus refraction tomography , 2015 .

[75]  Jean-Michel Martinez,et al.  Discharge and suspended sediment flux estimated along the mainstream of the Amazon and the Madeira Rivers (from in situ and MODIS Satellite Data) , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[76]  M. Naaim,et al.  A meteorological and blowing snow data set (2000–2016) from a high-elevation alpine site (Col du Lac Blanc, France, 2720 m a.s.l.) , 2019, Earth System Science Data.

[77]  Tanguy Le Borgne,et al.  Stretching, coalescence, and mixing in porous media. , 2013, Physical review letters.

[78]  Gilles Porel,et al.  Combined fluid temperature and flow logging for the characterization of hydraulic structure in a fractured karst aquifer , 2011 .

[79]  Rui Liu,et al.  A service-oriented architecture for coupling web service models using the Basic Model Interface (BMI) , 2017, Environ. Model. Softw..

[80]  H. Jourde,et al.  Contribution of magnetic resonance soundings for characterizing water storage in the unsaturated zone of karst aquifers , 2016 .

[81]  M. Dentz,et al.  Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push‐pull tracer tests , 2016 .

[82]  A. Perrier,et al.  SECHIBA : a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model , 1993 .

[83]  S. P. Anderson,et al.  Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth , 2017 .

[84]  M. Loreau,et al.  Soil fauna: key to new carbon models , 2016 .

[85]  Bart Nijssen,et al.  The Distributed Hydrology Soil Vegetation Model , 2002 .

[86]  E. Brun,et al.  A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting , 1992, Journal of Glaciology.

[87]  Jean-Baptiste Madeleine,et al.  Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance , 2017, Proceedings of the National Academy of Sciences.

[88]  W. McDowell,et al.  Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions. , 2018, The Science of the total environment.

[89]  Jean-Raynald de Dreuzy,et al.  Predictive modelling of hydraulic head responses to dipole flow experiments in a fractured/karstified limestone aquifer: Insights from a comparison of five modelling approaches to real-field experiments , 2012 .

[90]  C. Genthon,et al.  A novel experimental study of aeolian snow transport in Adelie Land (Antarctica) , 2014 .

[91]  E. Kennedy Down to Earth: Politics in the New Climatic Regime , 2019, Contemporary Sociology: A Journal of Reviews.

[92]  P. Cook Quantifying river gain and loss at regional scales , 2015 .

[93]  J. Malavoi,et al.  Le rôle de l’hydrologie sur la destruction de la végétation dans le lit d’une rivière à galets aménagée : l’Isère en Combe de Savoie , 2017 .

[94]  M. Maslin,et al.  Defining the Anthropocene , 2015, Nature.

[95]  Hao Shen,et al.  Molecular ways to nanoscale particles and films , 2002 .

[96]  V. Singh,et al.  Mathematical models of small watershed hydrology and applications. , 2002 .

[97]  Helmuth Trischler The Anthropocene , 2016, NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin.

[98]  B. Boudevillain,et al.  Multi-scale hydrometeorological observation and modelling for flash flood understanding , 2014 .

[99]  Philippe Lagacherie,et al.  Geo-MHYDAS: A landscape discretization tool for distributed hydrological modeling of cultivated areas , 2010, Comput. Geosci..

[100]  J. Braun,et al.  A simple model for regolith formation by chemical weathering , 2016 .

[101]  Dimitri Lague,et al.  3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology , 2011, ArXiv.

[102]  M. Voltz,et al.  Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events , 2001 .

[103]  From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment , 2017, Scientific Reports.

[104]  D A Livingstone,et al.  The biosphere. , 1973, Brookhaven symposia in biology.

[105]  Elisabeth N Bui,et al.  Data-driven Critical Zone science: A new paradigm. , 2016, The Science of the total environment.

[106]  P. Krause,et al.  JAMS – A Framework for Natural Resource Model Development and Application , 2006 .

[107]  S. P. Anderson,et al.  The Role of Critical Zone Observatories in Critical Zone Science , 2015 .

[108]  Y. Rubin,et al.  LOMOS-mini: A coupled system quantifying transient water and heat exchanges in streambeds , 2017, Journal of Hydrology.

[109]  Venkat Lakshmi,et al.  Advancing process‐based watershed hydrological research using near‐surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods , 2008 .

[110]  S. Brantley,et al.  Earthcasting the future Critical Zone , 2013 .

[111]  V. Guinot,et al.  SNO KARST: A French Network of Observatories for the Multidisciplinary Study of Critical Zone Processes in Karst Watersheds and Aquifers , 2018 .

[112]  Pierre Viallet,et al.  Towards multi-scale integrated hydrological models using the LIQUID® framework. Overview of the concepts and first application examples , 2010, Environ. Model. Softw..

[113]  Jeffery S. Horsburgh,et al.  Managing a community shared vocabulary for hydrologic observations , 2014, Environ. Model. Softw..

[114]  M. Descloîtres,et al.  Interpretation of magnetic resonance measurements in the varying earth’s magnetic field , 2016 .

[115]  Seth D. Guikema,et al.  Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds , 2016 .

[116]  Susan S. Hubbard,et al.  The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales , 2015, Water resources research.

[117]  Paul Poli,et al.  The ERA-Interim archive, version 2.0 , 2011 .

[118]  Christopher J. Duffy,et al.  Automating data-model workflows at a level 12 HUC scale: Watershed modeling in a distributed computing environment , 2014, Environ. Model. Softw..

[119]  Laurent Arnaud,et al.  Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series , 2016 .

[120]  G. Tallec,et al.  The potamochemical symphony: new progress in the high-frequency acquisition of stream chemical data , 2017 .

[121]  Susan L. Brantley,et al.  Designing a suite of measurements to understand the critical zone , 2015 .

[122]  Alina Barbu,et al.  The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes , 2012 .

[123]  Olivier Bour,et al.  Inferring field‐scale properties of a fractured aquifer from ground surface deformation during a well test , 2015 .

[124]  S. Carpenter,et al.  Planetary boundaries: Guiding human development on a changing planet , 2015, Science.

[125]  L. Hubert‐Moy,et al.  Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream Orders’ Drainage Basins , 2015, Ecosystems.

[126]  S. P. Anderson,et al.  Critical Zone Observatories: Building a network to advance interdisciplinary study of Earth surface processes , 2008, Mineralogical Magazine.

[127]  J. Kirchner Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology , 2006 .

[128]  H. Vereecken,et al.  Towards a network of observatories in terrestrial environmental research , 2006 .