Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs

Many partial differential equations (PDEs) can be written as a multi-symplectic Hamiltonian system, which has three local conservation laws, namely multi-symplectic conservation law, local energy conservation law and local momentum conservation law. In this paper, we give several systematic methods for discretizing general multi-symplectic formulations of Hamiltonian PDEs, including a local energy-preserving algorithm, a class of global energy-preserving methods and a local momentum-preserving algorithm. The methods are illustrated by the nonlinear Schrodinger equation and the Korteweg-de Vries equation. Numerical experiments are presented to demonstrate the conservative properties of the proposed numerical methods.

[1]  William C. Skamarock,et al.  A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids , 2010, J. Comput. Phys..

[2]  Luis A NUMERICAL SCHEME FOR NONLINEAR KLEIN-GORDON EQUATIONS , 1983 .

[3]  Jason Frank,et al.  Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law , 2006, SIAM J. Sci. Comput..

[4]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[5]  Yajuan Sun,et al.  Energy-preserving numerical methods for Landau–Lifshitz equation , 2011 .

[6]  M. Qin,et al.  Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .

[7]  Z. Fei,et al.  Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .

[8]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[9]  G. Quispel,et al.  Energy-preserving Runge-Kutta methods , 2009 .

[10]  Wang Yushun,et al.  Multi-symplectic algorithms for Hamiltonian partial differential equations , 2013 .

[11]  M. Qin,et al.  MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .

[12]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Elena Celledoni,et al.  Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..

[14]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[15]  Jian Wang A note on multisymplectic Fourier pseudospectral discretization for the nonlinear Schrödinger equation , 2007, Appl. Math. Comput..

[16]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[17]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[18]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[19]  Yushun Wang,et al.  Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system , 2013, J. Comput. Phys..

[20]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[21]  Brian E. Moore,et al.  Multi-symplectic integration methods for Hamiltonian PDEs , 2003, Future Gener. Comput. Syst..

[22]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[23]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[25]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .