Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs
暂无分享,去创建一个
[1] William C. Skamarock,et al. A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids , 2010, J. Comput. Phys..
[2] Luis. A NUMERICAL SCHEME FOR NONLINEAR KLEIN-GORDON EQUATIONS , 1983 .
[3] Jason Frank,et al. Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law , 2006, SIAM J. Sci. Comput..
[4] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[5] Yajuan Sun,et al. Energy-preserving numerical methods for Landau–Lifshitz equation , 2011 .
[6] M. Qin,et al. Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .
[7] Z. Fei,et al. Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .
[8] S. Reich,et al. Numerical methods for Hamiltonian PDEs , 2006 .
[9] G. Quispel,et al. Energy-preserving Runge-Kutta methods , 2009 .
[10] Wang Yushun,et al. Multi-symplectic algorithms for Hamiltonian partial differential equations , 2013 .
[11] M. Qin,et al. MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .
[12] T. Bridges. Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Elena Celledoni,et al. Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..
[14] S. Reich. Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .
[15] Jian Wang. A note on multisymplectic Fourier pseudospectral discretization for the nonlinear Schrödinger equation , 2007, Appl. Math. Comput..
[16] G. Quispel,et al. A new class of energy-preserving numerical integration methods , 2008 .
[17] N. Zabusky,et al. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .
[18] Brian E. Moore,et al. Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.
[19] Yushun Wang,et al. Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system , 2013, J. Comput. Phys..
[20] E. Hairer. Energy-preserving variant of collocation methods 1 , 2010 .
[21] Brian E. Moore,et al. Multi-symplectic integration methods for Hamiltonian PDEs , 2003, Future Gener. Comput. Syst..
[22] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[23] G. Quispel,et al. Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[24] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[25] L. Vu-Quoc,et al. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .