The trellis structure of maximal fixed-cost codes

We show that the family of maximal fixed-cost codes, with codeword costs defined in a right-cancellative semigroup, have biproper trellis presentations. Examples of maximal fixed-cost codes include such "nonlinear" codes as permutation codes, shells of constant Euclidean norm in the integer lattice, and of course ordinary linear codes over a finite field. The intersection of two codes having biproper trellis presentations is another code with a biproper trellis presentation; therefore "nonlinear" codes such as lattice shells or words of constant weight in a linear code have biproper trellis presentations.

[1]  Alexander Vardy,et al.  Proof of a conjecture of McEliece regarding the expansion index of the minimal trellis , 1996, IEEE Trans. Inf. Theory.

[2]  Robert J. McEliece,et al.  On the BCJR trellis for linear block codes , 1996, IEEE Trans. Inf. Theory.

[3]  Garik Markarian,et al.  Code Trellises and the Shannon Product , 1995 .

[4]  Steven A. Tretter,et al.  On optimal shaping of multidimensional constellations , 1994, IEEE Trans. Inf. Theory.

[5]  G. Forney,et al.  Minimality and observability of group systems , 1994 .

[6]  F. Kschischang,et al.  On the trellis structure of block codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[7]  Frank R. Kschischang,et al.  Optimal shaping properties of the truncated polydisc , 1994, IEEE Trans. Inf. Theory.

[8]  Amir K. Khandani,et al.  Shaping multidimensional signal spaces - I: Optimum shaping, shell mapping , 1993, IEEE Trans. Inf. Theory.

[9]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[10]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[11]  Gordon R. Lang,et al.  A Leech lattice modem , 1989, IEEE J. Sel. Areas Commun..

[12]  Jan C. Willems,et al.  Models for Dynamics , 1989 .

[13]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[14]  Douglas J. Muder Minimal trellises for block codes , 1988, IEEE Trans. Inf. Theory.

[15]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[16]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[17]  J. Pieter M. Schalkwijk,et al.  An algorithm for source coding , 1972, IEEE Trans. Inf. Theory.