A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems
暂无分享,去创建一个
[1] S. Mikkola,et al. Explicit Symplectic Algorithms For Time‐Transformed Hamiltonians , 1999 .
[2] S. Tremaine,et al. Linear Multistep Methods for Integrating Reversible Differential Equations , 1999, astro-ph/9906376.
[3] Harold F. Levison,et al. A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters , 1998 .
[4] M. A. López-Marcos,et al. Variable step implementation of geometric integrators , 1998 .
[5] M. Holman,et al. Dynamical Chaos in the Wisdom-Holman Integrator: Origins and Solutions , 1998, astro-ph/9803340.
[6] S. Mikkola. Practical Symplectic Methods with Time Transformation for the Few-Body Problem , 1997 .
[7] Jerrold E. Marsden,et al. Integration Algorithms and Classical Mechanics , 1996 .
[8] P. Hut,et al. Building a better leapfrog , 1995 .
[9] S. Tremaine,et al. Long-Term Planetary Integration With Individual Time Steps , 1994, astro-ph/9403057.
[10] Seppo Mikkola,et al. An implementation ofN-body chain regularization , 1993 .
[11] J. Wisdom,et al. Symplectic maps for the N-body problem. , 1991 .
[12] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[13] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[14] Leopold Alexander Pars,et al. A Treatise on Analytical Dynamics , 1981 .
[15] Benedict J. Leimkuhler,et al. The Adaptive Verlet Method , 1997, SIAM J. Sci. Comput..
[16] Melanie Grunwald,et al. Fundamentals of Celestial Mechanics , 1990 .
[17] R. Z. Sagdeev,et al. Nonlinear and Turbulent Processes in Physics , 1984 .