Crystal and magnetic structure of the Bi2RuMnO7 pyrochlore: A potential new cathode for solid oxide fuel cells

Abstract A new pyrochlore-like phase of composition Bi2RuMnO7 has been prepared as polycrystalline powder, structurally characterized from X-ray diffraction (XRD) and neutron powder diffraction (NPD) data, in complement with magnetic and transport measurements, and finally tested as cathode material for solid-oxide fuel cells (SOFCs). Bi2RuMnO7 pyrochlore is defined in a cubic unit cell with space group Fd-3m; the structural analysis from NPD data unveils a singular feature consisting of a cation disorder of Mn and Bi atoms between A and B positions. This disorder leads to the reduction of Mn4+ at B position to Mn2+ at A position and the oxidation of Bi3+ at A position to Bi5+ at B position. The low-temperature NPD data indicates an antiferromagnetic coupling of two subsets of Mn4+/Ru4+ spins, demonstrating that the magnetic frustration is partially relieved by the random distribution of Mn and Ru over the 16c sites. The obtained compound displays a metallic-like behavior with conductivity values at the SOFCs working temperatures (650–850 °C) that span between 39 and 28 Scm−1. Bi2RuMnO7 shows good performance working as a cathode with LSGM electrolyte, yielding output power densities of 360 mW cm−2 at 850 °C with pure H2 as a fuel.

[1]  T. Drummond,et al.  Resonant, dispersive optical tuning in an epitaxial (Al,Ga)As Fabry--Perot etalon , 1988 .

[2]  Y. Takeda,et al.  Crystal Structure and Electrical Properties of the Pyrochlore Ruthenate Bi2-xYxRu2O7 , 1993 .

[3]  K. T. Lee,et al.  LaSr3Fe3-yCoyO10-δ (0 ≤ y ≤ 1.5) Intergrowth Oxide Cathodes for Intermediate Temperature Solid Oxide Fuel Cells , 2006 .

[4]  Y. Kubo,et al.  Crystal structure, magnetic and transport properties, and electronic band structure of colossal magnetoresistance Tl2Mn2O7 pyrochlore , 1999 .

[5]  J. Alonso,et al.  Evaluation of the R2RuMnO7 pyrochlores as cathodes in solid-oxide fuel cells , 2011 .

[6]  R. Parks Valence Instabilities and Related Narrow-Band Phenomena , 1977 .

[7]  H. Okumura,et al.  Nature of spin freezing transition of geometrically frustrated pyrochlore system R2Ru2O7 (R=rare earth elements and Y) , 2001 .

[8]  W. Y. Hsu,et al.  Band structure of metallic pyrochlore ruthenates Bi2Ru2O7 and Pb2Ru2O6.5 , 1988 .

[9]  H. Bando,et al.  Structure and magnetic properties of the pyrochlore Ho 2 Ru 2 O 7 : A possible dipolar spin ice system , 2002 .

[10]  Piotr Jasinski,et al.  Composite (La, Sr)MnO3–YSZ cathode for SOFC , 2006 .

[11]  Y. Takeda,et al.  New Cathode Materials for Solid Oxide Fuel Cells Ruthenium Pyrochlores and Perovskites , 2000 .

[12]  J. Goodenough,et al.  Electrochemistry of ruthenates. Part 1.—Oxygen reduction on pyrochlore ruthenates , 1983 .

[13]  J González Dávila,et al.  De la calle , 1985 .

[14]  R. Carbonio,et al.  Synthesis, magnetic properties and Mössbauer spectroscopy for the pyrochlore family Bi2BB′O7 with B=Cr and Fe and B′=Nb, Ta and Sb , 2012 .

[15]  J. Longo,et al.  Oxygen Electrocatalysis on Some Oxide Pyrochlores , 1983 .

[16]  J. Alonso,et al.  Evolution of the crystal and magnetic structure of the R2MnRuO7 (R = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) family of pyrochlore oxides. , 2012, Dalton transactions.

[17]  J. Alonso,et al.  The Ho2MnRuO7 pyrochlore oxide: Magnetic structure versus magnetic frustration , 2010 .

[18]  M. E. Leonowicz,et al.  Neutron diffraction investigation of ordered oxygen vacancies in the defect pyrochlores, Pb2Ru2O6.5 and PbT1Nb2O6.5 , 1984 .

[19]  J. Marco,et al.  Structural and magnetic characterisation of the pyrochlores Bi2−xFex(FeSb)O7, (x=0.1, 0.2, 0.3), Nd1.8Fe0.2(FeSb)O7 and Pr2(FeSb)O7 , 2013 .

[20]  B. Steele,et al.  Neutron powder diffraction structure and electrical properties of the defect pyrochlores Pb1.5M2O6.5 (M = Nb, Ta) , 1988 .

[21]  C. Catlow,et al.  Defects and diffusion in pyrochlore structured oxides , 1998 .

[22]  E. Wachsman,et al.  Bismuth Ruthenate-Stabilized Bismuth Oxide Composite Cathodes for IT-SOFC , 2007 .

[23]  J. Goodenough,et al.  SrCo0.95Sb0.05O3−δ as Cathode Material for High Power Density Solid Oxide Fuel Cells , 2010 .

[24]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[25]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[26]  J. Alonso,et al.  Optimized energy conversion efficiency in solid-oxide fuel cells implementing SrMo1−xFexO3−δ perovskites as anodes , 2012 .

[27]  M. R. Díaz-Guillén,et al.  High ionic conductivity in the pyrochlore-type Gd2 − yLayZr2O7 solid solution (0 ≤ y ≤ 1) , 2008 .

[28]  Z. Zainal,et al.  Structures and solid solution mechanisms of pyrochlore phases in the systems Bi2O3-ZnO-(Nb, Ta)2O5 , 2010 .

[29]  P. A. Cox,et al.  The electronic structure of Bi2-xGdxRu2O7 and RuO2: A study by electron spectroscopy , 1986 .

[30]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[31]  P. Bordet,et al.  Pyrochlore formation, phase relations, and properties in the CaO–TiO2–(Nb,Ta)2O5 systems , 2008 .

[32]  Y. Kubo,et al.  Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure , 1996, Nature.

[33]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[34]  J. Alonso,et al.  Oxygen vacancy control in the defect pyrochlore: a way to tune the electronic bandwidth , 1999 .

[35]  Yunhui Huang,et al.  Thermoelectric solid-oxide fuel cell with Ca2Co2O5 as cathode material , 2013 .

[36]  B. Steele,et al.  Properties of Pyrochlore Ruthenate Cathodes for Intermediate Temperature Solid Oxide Fuel Cells , 1999 .