Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing.

[1]  J. Hammersley On Estimating Restricted Parameters , 1950 .

[2]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[3]  S. Lowen The Biophysical Journal , 1960, Nature.

[4]  B. Reiffen,et al.  An optimum demodulator for poisson processes: Photon source detectors , 1963 .

[5]  B. Salzberg,et al.  Optical Recording of Impulses in Individual Neurones of an Invertebrate Central Nervous System , 1973, Nature.

[6]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[7]  D. Zecevic,et al.  Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[9]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[10]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[11]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[12]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[13]  B. Sakmann,et al.  Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. , 1997, Biophysical journal.

[14]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[15]  D. Oertel The role of timing in the brain stem auditory nuclei of vertebrates. , 1999, Annual review of physiology.

[16]  R. Reid,et al.  Synchronous activity in the visual system. , 1999, Annual review of physiology.

[17]  J. H. Casseday,et al.  Timing in the auditory system of the bat. , 1999, Annual review of physiology.

[18]  L. Trussell,et al.  Synaptic mechanisms for coding timing in auditory neurons. , 1999, Annual review of physiology.

[19]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[20]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[21]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[22]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. N. Ross,et al.  Changes in axon fluorescence during activity: Molecular probes of membrane potential , 1974, The Journal of Membrane Biology.

[24]  P. Saggau,et al.  Fast three-dimensional laser scanning scheme using acousto-optic deflectors. , 2005, Journal of biomedical optics.

[25]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[26]  L Sacconi,et al.  Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Lucas Sjulson,et al.  Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory. , 2007, Physiology.

[28]  T. Sejnowski,et al.  A Compact Multiphoton 3D Imaging System for Recording Fast Neuronal Activity , 2007, PloS one.

[29]  Leonardo Sacconi,et al.  Optical recording of electrical activity in intact neuronal networks with random access second-harmonic generation microscopy. , 2008, Optics express.

[30]  Norio Matsuki,et al.  Fast and accurate detection of action potentials from somatic calcium fluctuations. , 2008, Journal of neurophysiology.

[31]  Junichi Nakai,et al.  Characterization and Subcellular Targeting of GCaMP-Type Genetically-Encoded Calcium Indicators , 2008, PloS one.

[32]  Samuel S-H Wang,et al.  Identification and clustering of event patterns from in vivo multiphoton optical recordings of neuronal ensembles. , 2008, Journal of neurophysiology.

[33]  T. Holy,et al.  Fast Three-Dimensional Fluorescence Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy , 2008, Neuron.

[34]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[35]  Eric Betzig,et al.  High-speed, low-photodamage nonlinear imaging using passive pulse splitters , 2008, Nature Methods.

[36]  Laurie D. Burns,et al.  High-speed, miniaturized fluorescence microscopy in freely moving mice , 2008, Nature Methods.

[37]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[38]  Damian J. Wallace,et al.  Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor , 2008, Nature Methods.

[39]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[40]  Keith J. Kelleher,et al.  Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity , 2008, Nature Neuroscience.

[41]  L. Tian,et al.  Reporting neural activity with genetically encoded calcium indicators , 2008, Brain cell biology.

[42]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.

[43]  Fritjof Helmchen,et al.  Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection. , 2009, Optics express.

[44]  Kunal K. Ghosh,et al.  Advances in light microscopy for neuroscience. , 2009, Annual review of neuroscience.

[45]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[46]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[47]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[48]  Takeharu Nagai,et al.  Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano , 2010, Nature Methods.

[49]  Walther Akemann,et al.  Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins , 2010, Nature Methods.

[50]  Eric Betzig,et al.  Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues , 2010, Nature Methods.

[51]  Sébastien Joucla,et al.  Quantitative estimation of calcium dynamics from ratiometric measurements: a direct, nonratioing method. , 2010, Journal of neurophysiology.

[52]  Knut Holthoff,et al.  Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons , 2010, The Journal of physiology.

[53]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[54]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[55]  Leslie M Loew,et al.  Single-voxel recording of voltage transients in dendritic spines. , 2011, Biophysical journal.

[56]  Rafael Yuste,et al.  Imaging Voltage in Neurons , 2011, Neuron.

[57]  Adam E. Cohen,et al.  Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein , 2011, Science.

[58]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.