The Global Cycles of Sulfur and Mercury

[1]  C. Cosio,et al.  Biotic formation of methylmercury: A bio–physico–chemical conundrum , 2019, Limnology and oceanography.

[2]  J. Lapierre,et al.  Global Meta‐Analysis on the Relationship Between Mercury and Dissolved Organic Carbon in Freshwater Environments , 2019, Journal of Geophysical Research: Biogeosciences.

[3]  D. Streets,et al.  Global and regional trends in mercury emissions and concentrations, 2010–2015 , 2019, Atmospheric Environment.

[4]  J. Aboal,et al.  Thawing of snow and ice caused extraordinary high and fast mercury fluxes to lake sediments in Antarctica , 2019, Geochimica et Cosmochimica Acta.

[5]  J. Sonke,et al.  Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes. , 2019, Chemosphere.

[6]  Yanxu Zhang,et al.  Modelling the mercury stable isotope distribution of Earth surface reservoirs: Implications for global Hg cycling , 2019, Geochimica et Cosmochimica Acta.

[7]  N. Fisher,et al.  Microbial generation of elemental mercury from dissolved methylmercury in seawater , 2018, Limnology and oceanography.

[8]  M. Saito,et al.  Dynamic mercury methylation and demethylation in oligotrophic marine water , 2018, Biogeosciences.

[9]  D. Archer,et al.  A model of mercury cycling and isotopic fractionation in the ocean , 2018, Biogeosciences.

[10]  F. Wang,et al.  Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. , 2018, Environmental science & technology.

[11]  H. Biester,et al.  Diatom ooze—A large marine mercury sink , 2018, Science.

[12]  B. Peucker‐Ehrenbrink,et al.  Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle , 2018, Earth and Planetary Science Letters.

[13]  Christina L. Olson,et al.  Mercury in Active‐Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and Spatial Distribution , 2018, Global Biogeochemical Cycles.

[14]  Martin Wild,et al.  A Revisit of Global Dimming and Brightening Based on the Sunshine Duration , 2018 .

[15]  P. Forster,et al.  Climate Impacts From a Removal of Anthropogenic Aerosol Emissions , 2018, Geophysical research letters.

[16]  D. Rumbold,et al.  Mercury biomagnification through food webs along a salinity gradient down-estuary from a biological hotspot , 2018 .

[17]  K. Schaefer,et al.  Permafrost Stores a Globally Significant Amount of Mercury , 2017, World Scientific Encyclopedia of Climate Change.

[18]  Christopher W. Moore,et al.  Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution , 2017, Nature.

[19]  S. Carn,et al.  A decade of global volcanic SO2 emissions measured from space , 2017, Scientific Reports.

[20]  P. Schmitt‐Kopplin,et al.  Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory , 2016, Science.

[21]  Cheng Zhu,et al.  Historical anthropogenic contributions to mercury accumulation recorded by a peat core from Dajiuhu montane mire, central China. , 2016, Environmental pollution.

[22]  M. Mallory,et al.  Temporal trends of mercury in eggs of five sympatrically breeding seabird species in the Canadian Arctic. , 2016, Environmental pollution.

[23]  Xinbin Feng,et al.  Isotopic evidence for distinct sources of mercury in lake waters and sediments , 2016 .

[24]  J. Collett,et al.  Increasing importance of deposition of reduced nitrogen in the United States , 2016, Proceedings of the National Academy of Sciences.

[25]  Jun Chen,et al.  Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering , 2016 .

[26]  T. Scanlon,et al.  Association of dissolved mercury with dissolved organic carbon in U.S. rivers and streams: The role of watershed soil organic carbon , 2016 .

[27]  Jianwu Tang,et al.  Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition , 2016 .

[28]  A. Knoll,et al.  Patterns of sulfur isotope fractionation during microbial sulfate reduction , 2016, Geobiology.

[29]  M. Winstrup,et al.  Timing and climate forcing of volcanic eruptions for the past 2,500 years , 2015, Nature.

[30]  K. Hobson,et al.  Rapidly increasing methyl mercury in endangered ivory gull (Pagophila eburnea) feathers over a 130 year record , 2015, Proceedings of the Royal Society B: Biological Sciences.

[31]  D. Canfield,et al.  Sulfate was a trace constituent of Archean seawater , 2014, Science.

[32]  D. Streets,et al.  Six centuries of changing oceanic mercury , 2014 .

[33]  J. Shutler,et al.  Exploiting satellite earth observation to quantify current global oceanic DMS flux and its future climate sensitivity , 2014 .

[34]  M. Saito,et al.  A global ocean inventory of anthropogenic mercury based on water column measurements , 2014, Nature.

[35]  M. McIlvin,et al.  Multiple sulfur isotope constraints on the modern sulfur cycle , 2014 .

[36]  S. Kasten,et al.  Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities , 2014, Science.

[37]  B. Jackson,et al.  Natural and anthropogenic variations in atmospheric mercury deposition during the Holocene near Quelccaya Ice Cap, Peru , 2014, Global biogeochemical cycles.

[38]  D. Streets,et al.  Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle , 2013 .

[39]  Jerry M. Parks,et al.  The Genetic Basis for Bacterial Mercury Methylation , 2013, Science.

[40]  M. Whitehouse,et al.  Variability of sulphur isotope ratios in pyrite and dissolved sulphate in granitoid fractures down to 1km depth - Evidence for widespread activity of sulphur reducing bacteria , 2013 .

[41]  J. Reinfelder,et al.  Microbial stable isotope fractionation of mercury: A synthesis of present understanding and future directions , 2013 .

[42]  Zbigniew Klimont,et al.  The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions , 2013 .

[43]  Toshitaka N. Suzuki,et al.  Sulphate–climate coupling over the past 300,000 years in inland Antarctica , 2012, Nature.

[44]  A. Paytan,et al.  Rapid Variability of Seawater Chemistry Over the Past 130 Million Years , 2012, Science.

[45]  F. Black,et al.  Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters , 2012 .

[46]  M. E. Brigham,et al.  Landscape controls on total and methyl Hg in the upper Hudson River basin, New York, USA , 2012 .

[47]  Reed C. Harris,et al.  The role of terrestrial vegetation in atmospheric Hg deposition: Pools and fluxes of spike and ambient Hg from the METAALICUS experiment , 2012 .

[48]  E. Nater,et al.  Latent effect of soil organic matter oxidation on mercury cycling within a southern boreal ecosystem. , 2012, Journal of environmental quality.

[49]  M. Deshusses,et al.  Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. , 2012, Environmental science & technology.

[50]  J. Blum Applications of Stable Mercury Isotopes to Biogeochemistry , 2012 .

[51]  Zifeng Lu,et al.  All-time releases of mercury to the atmosphere from human activities. , 2011, Environmental science & technology.

[52]  P. Quinn,et al.  The case against climate regulation via oceanic phytoplankton sulphur emissions , 2011, Nature.

[53]  G. Keeler,et al.  Sources of mercury in precipitation to Underhill, VT , 2011 .

[54]  G. Velders,et al.  Recent decreases in observed atmospheric concentrations of SO2 in the Netherlands in line with emission reductions , 2011 .

[55]  B. Schneider,et al.  Atlantic mercury emission determined from continuous analysis of the elemental mercury sea‐air concentration difference within transects between 50°N and 50°S , 2011 .

[56]  M. Gustin,et al.  Sources of gaseous oxidized mercury and mercury dry deposition at two southeastern U.S. sites , 2011 .

[57]  A. Calbet,et al.  Stimulation of gross dimethylsulfide (DMS) production by solar radiation , 2011 .

[58]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[59]  M. Liuzzo,et al.  New clues on the contribution of Earth’s volcanism to the global mercury cycle , 2011 .

[60]  T. Bosak,et al.  Large Sulfur Isotope Fractionation Does Not Require Disproportionation , 2011, Science.

[61]  C. Clerbaux,et al.  Infrared satellite observations of hydrogen sulfide in the volcanic plume of the August 2008 Kasatochi eruption , 2011 .

[62]  C. Schadt,et al.  Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation , 2011, Applied and Environmental Microbiology.

[63]  S. Edwards,et al.  Temporal increase in organic mercury in an endangered pelagic seabird assessed by century-old museum specimens , 2011, Proceedings of the National Academy of Sciences.

[64]  Nickolay A. Krotkov,et al.  SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space‐based (SCIAMACHY and OMI) observations , 2011 .

[65]  A. J. Kettle,et al.  An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean , 2011 .

[66]  A. Boyce,et al.  Early oxygenation of the terrestrial environment during the Mesoproterozoic , 2010, Nature.

[67]  F. Morel,et al.  Mercury methylation in oxygen deficient zones of the oceans: No evidence for the predominance of anaerobes , 2010 .

[68]  Allan Kolker,et al.  Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America , 2010 .

[69]  R. Mason,et al.  Global mercury emissions to the atmosphere from anthropogenic and natural sources , 2010 .

[70]  M. Mast,et al.  Historical deposition of mercury and selected trace elements to high-elevation National Parks in the Western U.S. inferred from lake-sediment cores , 2010 .

[71]  C. Driscoll,et al.  Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern U.S. streams , 2010 .

[72]  Zbigniew Klimont,et al.  Anthropogenic sulfur dioxide emissions: 1850–2005 , 2010 .

[73]  K. Nislow,et al.  Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation , 2010, Annals of the New York Academy of Sciences.

[74]  Noelle E. Selin,et al.  Global Biogeochemical Cycling of Mercury: A Review , 2009 .

[75]  E. Prestbo Wet deposition of mercury in the U.S. and Canada, 1996-2005: Results and analysis of the NADP mercury deposition network (MDN) , 2009 .

[76]  D. Lenschow,et al.  Sulfur dioxide in the tropical marine boundary layer: dry deposition and heterogeneous oxidation observed during the Pacific Atmospheric Sulfur Experiment , 2009 .

[77]  Arthur H. Johnson,et al.  Seven Decades of Calcium Depletion in Organic Horizons of Adirondack Forest Soils , 2008 .

[78]  J. Bada,et al.  The Miller Volcanic Spark Discharge Experiment , 2008, Science.

[79]  T. Douglas,et al.  Investigation of the deposition and emission of mercury in arctic snow during an atmospheric mercury depletion event , 2008 .

[80]  I. Wängberg,et al.  Determination of Henry's law constant for elemental mercury. , 2008, Chemosphere.

[81]  D. Jacob,et al.  Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources , 2008 .

[82]  R. Yantosca,et al.  Global 3‐D land‐ocean‐atmosphere model for mercury: Present‐day versus preindustrial cycles and anthropogenic enrichment factors for deposition , 2008 .

[83]  S. Self,et al.  Sulfur and Chlorine in Late Cretaceous Deccan Magmas and Eruptive Gas Release , 2008, Science.

[84]  G. Likens,et al.  Regional precipitation mercury trends in the eastern USA, 1998–2005: Declines in the Northeast and Midwest, no trend in the Southeast , 2008 .

[85]  A. Soler,et al.  Sulphur isotopes as tracers of the influence of a coal-fired power plant on a Scots pine forest in Catalonia (NE Spain) , 2008 .

[86]  Andrew Heyes,et al.  Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition , 2007, Proceedings of the National Academy of Sciences.

[87]  Charles T Driscoll,et al.  Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. , 2007, Ecological applications : a publication of the Ecological Society of America.

[88]  Sergio M. Vallina,et al.  Strong Relationship Between DMS and the Solar Radiation Dose over the Global Surface Ocean , 2007, Science.

[89]  T. Holsen,et al.  Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States , 2007 .

[90]  C. Genthon,et al.  Sulfur cycle at Last Glacial Maximum: Model results versus Antarctic ice core data , 2006 .

[91]  M. Engle,et al.  Atmospheric mercury emissions from substrates and fumaroles associated with three hydrothermal systems in the western United States , 2006 .

[92]  J. Sigler,et al.  Recent trends in anthropogenic mercury emission in the northeast United States - article no. D14316 , 2006 .

[93]  G. Southam,et al.  Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex , 2006 .

[94]  Simon Wilson,et al.  Global anthropogenic mercury emission inventory for 2000 , 2006 .

[95]  Yong-Chil Seo,et al.  Speciation and mass distribution of mercury in a bituminous coal-fired power plant , 2006 .

[96]  G. Likens,et al.  Long-term relationships between SO2 and NOx emissions and SO4(2-) and NO3- concentration in bulk deposition at the Hubbard Brook Experimental Forest, NH. , 2005, Journal of environmental monitoring : JEM.

[97]  Meinrat O. Andreae,et al.  Strong present-day aerosol cooling implies a hot future , 2005, Nature.

[98]  D. Stern Reversal in the Trend of Global Anthropogenic Sulfur Emissions , 2005 .

[99]  A. McGonigle,et al.  H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes , 2005 .

[100]  C. Folt,et al.  Patterns of Hg Bioaccumulation and Transfer in Aquatic Food Webs Across Multi-lake Studies in the Northeast US , 2005, Ecotoxicology.

[101]  Henning,et al.  Human Influence on the Sulphur Cycle , 2005 .

[102]  W. Holser,et al.  Modelling the Natural Cycle of Sulphur Through Phanerozoic Time * , 2005 .

[103]  A. Paytan,et al.  Seawater Sulfur Isotope Fluctuations in the Cretaceous , 2004, Science.

[104]  D. Pyle,et al.  The importance of volcanic emissions for the global atmospheric mercury cycle , 2003 .

[105]  C. Lohse,et al.  Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve” , 2003 .

[106]  M. Reheis,et al.  Multiple oxygen and sulfur isotopic analyses on water‐soluble sulfate in bulk atmospheric deposition from the southwestern United States , 2003 .

[107]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[108]  Z. Xie,et al.  A potential source of atmospheric sulfur from penguin colony emissions , 2002 .

[109]  W. Shotyk,et al.  A 14 500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic influences and a correlation to bromine accumulation , 2002 .

[110]  Hans-F. Graf,et al.  The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years , 2002 .

[111]  D. Engstrom,et al.  Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 210Pb dated sediment cores , 2002 .

[112]  M. Steinke,et al.  DMS production in a coccolithophorid bloom: evidence for the importance of dinoflagellate DMSP lyases , 2002 .

[113]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[114]  M. Mast,et al.  Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacks , 2001 .

[115]  M. Frischer,et al.  A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. , 2001, Environmental science & technology.

[116]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[117]  J. Banfield,et al.  Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. , 2000, Science.

[118]  J. Bockheim,et al.  Origins of sulphate in Antarctic dry-valley soils as deduced from anomalous 17O compositions , 2000, Nature.

[119]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[120]  Simon F. Watts,et al.  The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide , 2000 .

[121]  Oliver Lindqvist,et al.  Large scale mercury and trace element measurements in the Amazon basin , 2000 .

[122]  Robert Sausen,et al.  The contribution of aircraft emissions to the atmospheric sulfur budget , 1999 .

[123]  S. Pehkonen,et al.  The chemistry of atmospheric mercury: a review , 1999 .

[124]  J. Nóvoa-Muñoz,et al.  Mercury in a spanish peat bog: archive of climate change and atmospheric metal deposition , 1999, Science.

[125]  Henning Rodhe,et al.  Human impact on the atmospheric sulfur balance , 1999 .

[126]  H. Fischer,et al.  Sulfate and nitrate firn concentrations on the Greenland ice sheet: 2. Temporal anthropogenic deposition changes , 1998 .

[127]  D. Canfield,et al.  Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite , 1998 .

[128]  R. Furness,et al.  Accelerated increase in mercury contamination in north Atlantic mesopelagic food chains as indicated by time series of seabird feathers , 1997 .

[129]  P. Liss,et al.  Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment , 1996, Nature.

[130]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[131]  D. Canfield,et al.  Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle , 1996, Nature.

[132]  Robert L. Folk,et al.  Bacteria as Mediators of Copper Sulfide Enrichment During Weathering , 1996, Science.

[133]  A. Schultz,et al.  Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean , 1996 .

[134]  J. Rudd,et al.  Photodegradation of methylmercury in lakes , 1996, Nature.

[135]  S. Watanabe,et al.  Relation between the concentrations of DMS in surface seawater and air in the temperate North Pacific region , 1995 .

[136]  C. Hammer,et al.  A 10‐century comparison of prominent bipolar volcanic events in ice cores , 1995 .

[137]  L. Tarrason,et al.  Estimation of seasonal dimethyl sulphide fluxes over the North Atlantic Ocean and their contribution to European pollution levels , 1995 .

[138]  M. Andreae,et al.  Biogenic sulfur emissions and aerosols over the tropical South Atlantic: 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei , 1995 .

[139]  M. Reheis,et al.  Dust deposition in southern Nevada and California, 1984-1989: Relations to climate, source area, and source lithology , 1995 .

[140]  D. Canfield,et al.  The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. , 1994, Science.

[141]  J. Galloway,et al.  Sulfur and reactive nitrogen oxide fluxes in the North Atlantic atmosphere , 1994 .

[142]  J. Rasmussen,et al.  Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes , 1994, Nature.

[143]  P. Zettwoog,et al.  Sulphur output and magma degassing budget of Stromboli volcano , 1994, Nature.

[144]  A. Krueger,et al.  The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations , 1993, Nature.

[145]  H. Ohmoto,et al.  3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. , 1993, Science.

[146]  R. Mason,et al.  The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean , 1993 .

[147]  J. Putaud,et al.  Dimethylsulfide, aerosols, and condensation nuclei over the tropical northeastern Atlantic Ocean , 1993 .

[148]  R. Larsen,et al.  Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George Island) , 1993 .

[149]  Ralph Mitchell,et al.  Sulfate stimulation of mercury methylation in freshwater sediments , 1992 .

[150]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[151]  P. Crutzen,et al.  Anthropogenic influence on the distribution of tropospheric sulphate aerosol , 1992, Nature.

[152]  Paul G. Falkowski,et al.  Natural Versus Anthropogenic Factors Affecting Low-Level Cloud Albedo over the North Atlantic , 1992, Science.

[153]  Daniel J. Jacob,et al.  Global inventory of sulfur emissions with 1°×1° resolution , 1992 .

[154]  J. Gras,et al.  Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air , 1991, Nature.

[155]  M. Legrand,et al.  Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle , 1991, Nature.

[156]  R. Larsen,et al.  Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica , 1991, Nature.

[157]  O. Malm,et al.  Mercury in the Madeira River ecosystem, Rondônia, Brazil , 1991 .

[158]  L. Barrie,et al.  Origin of sulphur in Canadian Arctic haze from isotope measurements , 1991, Nature.

[159]  E. A. Henry,et al.  Mercury methylation in aquatic systems affected by acid deposition. , 1991, Environmental pollution.

[160]  P. Mayewski,et al.  An ice-core record of atmospheric response to anthropogenic sulphate and nitrate , 1990, Nature.

[161]  T. Wigley,et al.  Possible climate change due to SO2-derived cloud condensation nuclei , 1989, Nature.

[162]  D. Canfield,et al.  A new model for atmospheric oxygen over Phanerozoic time. , 1989, American journal of science.

[163]  S. Schwartz Are global cloud albedo and climate controlled by marine phytoplankton? , 1988, Nature.

[164]  J. Nriagu,et al.  Biogenic Sulfur and the Acidity of Rainfall in Remote Areas of Canada , 1987, Science.

[165]  T. Bates,et al.  Evidence for the climatic role of marine biogenic sulphur , 1987, Nature.

[166]  M. Legrand,et al.  A 220-year continuous record of volcanic H2SO4 in the Antarctic ice sheet , 1987, Nature.

[167]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[168]  Joseph M. Prospero,et al.  Nitrate, non-sea-salt sulfate, and mineral aerosol over the northwestern Indian Ocean , 1987 .

[169]  R. Berner,et al.  Pyrite and organic matter in Phanerozoic normal marine shales , 1986 .

[170]  T. Anderson,et al.  Sulfur isotopic variations in low-sulfur coals from the Rocky Mountain region , 1986 .

[171]  P. Mayewski,et al.  Sulfate and Nitrate Concentrations from a South Greenland Ice Core , 1986, Science.

[172]  M. Oppenheimer,et al.  Acid Deposition, Smelter Emissions, and the Linearity Issue in the Western United States , 1985, Science.

[173]  R. Bartha,et al.  Sulfate-Reducing Bacteria: Principal Methylators of Mercury in Anoxic Estuarine Sediment , 1985, Applied and environmental microbiology.

[174]  C. Meyer Ore Metals Through Geologic History , 1985, Science.

[175]  P. Brimblecombe,et al.  Iron and sulfur in the pre-biologic ocean. , 1985, Precambrian research.

[176]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[177]  Glenn E. Shaw,et al.  Bio-controlled thermostasis involving the sulfur cycle , 1983 .

[178]  M. Schidlowski Evolution of Photoautotrophy and Early Atmospheric Oxygen Levels , 1983 .

[179]  R. Berner Burial of organic carbon and pyrite sulfur in the modern ocean : its geochemical and environmental significance , 1982 .

[180]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[181]  R. Garrels,et al.  Phanerozoic cycles of sedimentary carbon and sulfur. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[182]  C. F. Cullis,et al.  Atmospheric sulphur: Natural and man-made sources , 1980 .

[183]  M. Silver,et al.  Ore leaching by bacteria. , 1980, Annual review of microbiology.

[184]  J. Pollack,et al.  Venus Lower Atmospheric Composition: Analysis by Gas Chromatography , 1979, Science.

[185]  H. Krouse,et al.  Chapter 6.2 Reductive Reactions in the Sulfur Cycle , 1979 .

[186]  J. Nriagu,et al.  Isotopic composition of sulfur in precipitation within the Great Lakes Basin , 1978 .

[187]  J. Monster,et al.  The sulphur isotopic composition of ocean water sulphate , 1978 .

[188]  M. Herron,et al.  Atmospheric trace metals and sulfate in the Greenland Ice Sheet , 1977 .

[189]  G. Likens,et al.  Acid Precipitation in the Northeastern United States: pH and Acidity , 1976, Science.

[190]  I. R. Kaplan Stable isotopes as a guide to biogeochemical processes , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[191]  H. Nielsen Isotopic composition of the major contributors to atmospheric sulfur , 1974 .

[192]  J. P. Friend The Global Sulfur Cycle , 1973 .

[193]  R. Barber,et al.  Mercury Concentrations in Recent and Ninety-Year-Old Benthopelagic Fish , 1972, Science.

[194]  M. L. Jensen,et al.  Bacteriogenic Sulfur in Air Pollution , 1972, Science.

[195]  G. Likens,et al.  Atmospheric Sulfur: Its Effect on the Chemical Weathering of New England , 1972, Science.

[196]  C. Billings,et al.  Mercury Emissions from Coal Combustion , 1972, Science.

[197]  Yuan-hui Li Geochemical mass balance among lithosphere, hydrosphere, and atmosphere , 1972 .

[198]  W. Gutenmann,et al.  Residues of Total Mercury and Methylmercuric Salts in Lake Trout as a Function of Age , 1971, Science.

[199]  P Cloud,et al.  The oxygen cycle. , 1970, Scientific American.

[200]  W. T. Holser,et al.  Isotope geochemistry of sedimentary sulfates , 1966 .

[201]  C. Junge Sulfur in the atmosphere , 1960 .

[202]  E. Eriksson The Yearly Circulation of Chloride and Sulfur in Nature; Meteorological, Geochemical and Pedological Implications. Part II , 1959 .