Multimodal Deep Boltzmann Machines for feature selection on gene expression data
暂无分享,去创建一个
Ito Wasito | Setiadi Yazid | Arida Ferti Syafiandini | Aries Fitriawan | Mukhlis Amien | S. Yazid | Mukhlis Amien | Aries Fitriawan | A. F. Syafiandini | Ito Wasito
[1] Pierre Baldi,et al. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..
[2] Stanislaw Osowski,et al. Data mining for feature selection in gene expression autism data , 2015, Expert Syst. Appl..
[3] Jason Weston,et al. Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.
[4] Aidong Zhang,et al. Identifying informative risk factors and predicting bone disease progression via deep belief networks. , 2014, Methods.
[5] Sergios Theodoridis,et al. Machine Learning: A Bayesian and Optimization Perspective , 2015 .
[6] Hi Hoai,et al. Gene Selection for Cancer Classification Using DCA , 2009 .
[7] Nitish Srivastava,et al. Multimodal learning with deep Boltzmann machines , 2012, J. Mach. Learn. Res..
[8] S. Ishii,et al. Identification of expressed genes linked to malignancy of human colorectal carcinoma by parametric clustering of quantitative expression data , 2003, Genome Biology.