Reconfiguration of subspace partitions

[1]  Papa Sissokho,et al.  The maximum size of a partial spread in a finite projective space , 2016, J. Comb. Theory, Ser. A.

[2]  Sascha Kurz,et al.  Partial spreads and vector space partitions , 2016, 1611.06328.

[3]  Beniamino Segre,et al.  Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane , 1964 .

[4]  Se June Hong,et al.  A General Class of Maximal Codes ror Computer Applications , 1972, IEEE Transactions on Computers.

[5]  Sascha Kurz Packing vector spaces into vector spaces , 2017, Australas. J Comb..

[6]  Albrecht Beutelspacher,et al.  Partial spreads in finite projective spaces and partial designs , 1975 .

[7]  Alberto Ravagnani,et al.  Partial spreads in random network coding , 2014, Finite Fields Their Appl..

[8]  Albrecht Beutelspacher Partitions of finite vector spaces: An application of the frobenius number in geometry , 1978 .

[9]  Sascha Kurz Improved upper bounds for partial spreads , 2017, Des. Codes Cryptogr..

[10]  Charles Vanden Eynden,et al.  On vector space partitions and uniformly resolvable designs , 2008, Des. Codes Cryptogr..

[11]  M. Herzog,et al.  Linear and Nonlinear Single-Error-Correcting Perfect Mixed Codes , 1971, Inf. Control..

[12]  Tor Bu Partitions of a vector space , 1980, Discret. Math..

[13]  Johannes André,et al.  Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe , 1954 .

[14]  Charles Vanden Eynden,et al.  Partitions of finite vector spaces over GF(2) into subspaces of dimensions 2 and s , 2012, Finite Fields Their Appl..

[15]  Olof Heden,et al.  A Survey of the Different Types of Vector Space Partitions , 2011, Discret. Math. Algorithms Appl..

[16]  Papa A. Sissokho,et al.  Partitions of V(n, q) into 2- and s-Dimensional Subspaces , 2012 .

[17]  Papa A. Sissokho,et al.  Partitions of finite vector spaces into subspaces , 2008 .

[18]  David A. Drake,et al.  Partial t-spreads and group constructible (s,r,μ)-nets , 1979 .

[19]  Apoorva Khare,et al.  Vector spaces as unions of proper subspaces , 2008, 0803.2746.