Extending the fast multipole method to charges inside or outside a dielectric sphere

In this paper, we propose a novel method to extend the fast multipole method (FMM) to calculate the electrostatic potential due to charges inside or outside a dielectric sphere. The key result which allows such an extension is the construction of a small number (two for a 10^-^2 relative error in reaction potentials inside the sphere) of image point charges for source point charges inside or outside the dielectric sphere. Numerical results validate the accuracy and high efficiency of the resulting algorithm.

[1]  Leslie Greengard,et al.  A Method of Images for the Evaluation of Electrostatic Fields in Systems of Closely Spaced Conducting Cylinders , 1998, SIAM J. Appl. Math..

[2]  Ari Sihvola,et al.  Electrostatic image theory for the layered dielectric sphere , 1991 .

[3]  W. T. Norris Charge images in a dielectric sphere , 1995 .

[4]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[5]  Anoop Gupta,et al.  A parallel adaptive fast multipole method , 1993, Supercomputing '93. Proceedings.

[6]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[7]  R. Saleh FastCap : A Multipole Accelerated 3-D Capacitance Extraction Program , 1991 .

[8]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[9]  Ismo V. Lindell,et al.  Image theory for electrostatic and magnetostatic problems involving a material sphere , 1993 .

[10]  W.C. Chew,et al.  Fast algorithms for wave scattering developed at the University of Illinois' Electromagnetics Laboratory , 1993, IEEE Antennas and Propagation Magazine.

[11]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[12]  Raminderpal Singh FastCap: A Multipole Accelerated 3D Capacitance Extraction Program , 2002 .

[13]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[14]  Hongwei Cheng On the Method of Images for Systems of Closely Spaced Conducting Spheres , 2001, SIAM J. Appl. Math..

[15]  I. Lindell Electrostatic image theory for the dielectric sphere , 1992 .

[16]  Carlos Simmerling,et al.  Chapter 6 Hybrid Explicit/Implicit Solvation Methods , 2006 .

[17]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[18]  Weng Cho Chew,et al.  A fast multipole-method-based calculation of the capacitance matrix for multiple conductors above stratified dielectric media , 2001 .

[19]  Frank Thomson Leighton,et al.  Preconditioned, Adaptive, Multipole-Accelerated Iterative Methods for Three-Dimensional First-Kind Integral Equations of Potential Theory , 1994, SIAM J. Sci. Comput..

[20]  Jacob K. White,et al.  FastCap: a multipole accelerated 3-D capacitance extraction program , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Romuald Poteau,et al.  Erratum: Structural properties of sodium microclusters (n=4−34) using a Monte Carlo growth method [J. Chem. Phys. 98, 6540 (1993)] , 1993 .

[22]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.