Marine corrosion in tropical environments

This article presents the results obtained at 16 tropical test sites participating in the "Ibero-American Map of Atmospheric Corrosiveness" (MICAT), a project on atmospheric corrosion carried out during the period 1988-1994 at some 70 test sites distributed across 12 countries of the Latin-American region, Spain and Portugal. The tropical climate and its different climatic variants are characterized by high average air temperatures, with considerable daily thermal fluctuations, high average relative humidity, and generally high precipitation volumes. The work is structured in three main blocks: apparently unpolluted atmospheres (i), and marine atmospheres, differentiating between pure marine atmospheres (ii) and those in which both chloride (CI') and sulfur dioxide (SOz) pollutants coexist (iii). In each block an attempt was made to determine the role of the tropical climate in the magnitude of corrosion attack shown by four typical reference metals (mild steel, zinc, copper and aluminum) exposed for one-year periods in tropical atmospheric exposure conditions.

[1]  C. Hansson,et al.  Electrical resistivity measurements of Portland cement based materials , 1983 .

[2]  D. Cook,et al.  The role of goethite in the formation of the protective corrosion layer on steels , 1999 .

[3]  G. Schmitt Effect of Elemental Sulfur on Corrosion in Sour Gas Systems , 1991 .

[4]  R. Kain,et al.  Marine Atmospheric Corrosion Museum Report on the Performance of Thermal Spray Coatings on Steel , 1987 .

[5]  A. Arvia,et al.  The electrodissolution and passivation of mild steel in alkaline sulphide solutions , 1982 .

[6]  J. Weiss Investigations on the radical HO2 in solution , 1935 .

[7]  P. Pullar-Strecker Corrosion damaged concrete , 1987 .

[8]  C. Andrade,et al.  Galvanized steel behaviour in Ca(OH)2 saturated solutions containing SO4 ions , 1987 .

[9]  H. Townsend,et al.  Atmospheric corrosion of different steels in marine, rural and industrial environments , 1999 .

[10]  I. Beech,et al.  The Role of Iron in SRB Influenced Corrosion of Mild Steel , 1998 .

[11]  S. Yeomans Corrosion of the Zinc Alloy Coating in Galvanized Reinforced Concrete , 1998 .

[12]  C. Andrade,et al.  Cement paste hardening process studied by impedance spectroscopy , 1999 .

[13]  W. Hamilton Sulphate-Reducing Bacteria and Their Role in Biocorrosion , 1991 .

[14]  SPRAYED ZINC GALVANIC ANODES FOR CONCRETE MARINE BRIDGE SUBSTRUCTURES , 1994 .

[15]  B. G. Callaghan,et al.  The performance of a 12% chromium steel in concrete in severe marine environments , 1993 .

[16]  H. Eyring,et al.  Atmospheric Corrosion , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Heidersbach,et al.  Degradation of Metal-Fiber-Reinforced Concrete Exposed to a Marine Environment , 1980 .

[18]  W. Hime,et al.  Performance Variances of Galvanized Steel in Mortar and Concrete , 1993 .

[19]  H. Videla Electrochemical Interpretation of the Role of Microorganisms in Corrosion , 1988 .

[20]  W. Hamilton,et al.  Sulphate-reducing bacteria and anaerobic corrosion. , 1985, Annual review of microbiology.

[21]  Z. Szklarska‐Śmiałowska The pitting corrosion of iron in sodium sulphate , 1978 .

[22]  S. Musić,et al.  The atmospheric corrosion of iron as studied by Mössbauer spectroscopy , 1982 .

[23]  J. P. Franey,et al.  Copper patinas formed in the atmosphere—I. Introduction , 1987 .

[24]  J. Chavarín,et al.  Electrochemical Investigations of the Activation Mechanism of Aluminum , 1991 .

[25]  Ravindra K. Dhir,et al.  Chloride binding in GGBS concrete , 1996 .

[26]  S. R. Yeomans,et al.  Performance of Black, Galvanized, and Epoxy-Coated Reinforcing Steels in Chloride-Contaminated Concrete , 1994 .

[27]  L. Veleva,et al.  Corrosivity category maps of a humid tropical atmosphere: the Yucatán Peninsula, México , 1999 .

[28]  L. J. Parrott,et al.  Factors influencing relative humidity in concrete , 1991 .

[29]  T. Graedel Gildes model studies of aqueous chemistry. I. Formulation and potential applications of the multi-regime model , 1996 .

[30]  Mark Alexander,et al.  A chloride conduction test for concrete , 1995 .

[31]  J. P. Bell,et al.  Scanning electron microscopic visualization of biodegradation of polycaprolactones by fungi , 1981 .

[32]  H. H. Uhlig,et al.  Environmental Factors Affecting the Critical Potential for Pitting in 18–8 Stainless Steel , 1966 .

[33]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[34]  M. Benarie,et al.  A general corrosion function in terms of atmospheric pollutant concentrations and rain pH , 1986 .

[35]  Morris Cohen,et al.  The Anodic Oxidation of Iron in a Neutral Solution II . Effect of Ferrous Ion and pH on the Behavior of Passive Iron , 1963 .

[36]  W. Köppen Das geographische System der Klimate , 1936 .

[37]  H. Videla,et al.  Bacterial biofilms on cathodically protected stainless steel , 1997 .

[38]  G. Fagerlund THE CAPILLARITY OF CONCRETE , 1982 .

[39]  P. Castro,et al.  Corrosion of reinforced concrete in a tropical marine environment and in accelerated tests , 1997 .

[40]  C. Andrade,et al.  Corrosion Rate of Galvanized Steel Immersed in Saturated Solutions of Ca(OH)2 in the pH Range 12–13 · 8 , 1983 .

[41]  P. K. Mehta Durability of Concrete in Marine Environment--A Review , 1980 .

[42]  G. King,et al.  The Influence of Marine Environments on Metals and Fabricated Coated Metal Products, Freely Exposed and Partially Sheltered , 1995 .

[43]  F. Haynie,et al.  Derivation of a Damage Function for Galvanized Steel Structures: Corrosion Kinetics and Thermodynamic Considerations , 1990 .

[44]  W. John,et al.  Measurement of aerosol size distributions for nitrate and major ionic species , 1988 .

[45]  H. Isaacs A STOCHASTIC ANALYSIS OF POTENTIAL FLUCTUATIONS DURING PASSIVE FILM BREAKDOWN AND REPAIR OF IRON , 1993 .

[46]  E. Baker,et al.  Long-Term Atmospheric Corrosion Behavior of Various Grades of Stainless Steel , 1987 .

[47]  J. Ballance,et al.  Marine Salts Contribution to Atmospheric Corrosion , 1987 .

[48]  N. D. Tomashov Theory of corrosion and protection of metals : the science of corrosion , 1966 .

[49]  A. Arvia,et al.  THE ELECTROCHEMICAL BEHAVIOR OF MILD STEEL IN PHOSPHATE-BORATE-SULFIDE SOLUTIONS , 1983 .

[50]  Mark Alexander,et al.  PREDICTING CHLORIDE LEVELS IN MARINE CONCRETE , 1999 .

[51]  Jorge Uruchurtu Chavarin,et al.  Characterization of Prerusted Steels in Some Ibero-American Atmospheres by Electrochemical Potential Noise Measurement , 1996 .

[52]  T. Misawa,et al.  The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature , 1974 .

[53]  M. G. Bailey,et al.  The Formation of Ferrous Monosulfide Polymorphs during the Corrosion of Iron by Aqueous Hydrogen Sulfide at 21°C , 1980 .

[54]  Pietro Pedeferri,et al.  Cathodic protection and cathodic prevention , 1996 .

[55]  P. Castro,et al.  THE CORROSION PERFORMANCE OF STEEL AND REINFORCED CONCRETE IN A TROPICAL HUMID CLIMATE. A REVIEW , 1998 .

[56]  R. Edyvean,et al.  Interactions between cathodic protection and bacterial settlement on steel in seawater , 1992 .

[57]  Maria de Fátima Montemor,et al.  Analytical characterization of the passive film formed on steel in solutions simulating the concrete interstitial electrolyte , 1998 .

[58]  C. Ozyildirim,et al.  Resistance to Chloride Ion Penetration of Concretes Containing Fly Ash, Silica Fume, or Slag , 1988 .

[59]  R. Kelly,et al.  THE ELECTROCHEMISTRY OF SRB CORROSION AND RELATED INORGANIC PHENOMENA , 1991 .

[60]  Carolyn M. Hansson,et al.  The influence of internal relative humidity on the rate of corrosion of steel embedded in concrete and mortar , 1994 .

[61]  F. Corvo,et al.  ATMOSPHERIC CORROSIVITY IN THE CARIBBEAN AREA , 1997 .

[62]  J. Kruger,et al.  Ellipsometric‐Potentiostatic Studies of Iron Passivity I . Anodic Film Growth in Slightly Basic Solutions , 1967 .

[63]  D. Gabe,et al.  Electrodeposited zinc alloy coatings , 1993 .

[64]  Desmond C. Cook,et al.  Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel , 1998 .

[65]  J. Guézennec Cathodic protection and microbially induced corrosion , 1994 .

[66]  R. Salvarezza,et al.  EFFECT OF SULFIDES ON THE ELECTROCHEMICAL BEHAVIOR OF AISI 304 STAINLESS STEEL IN NEUTRAL BUFFERED SOLUTIONS , 1986 .

[67]  P. M. Scott,et al.  Environmentally induced cracking , 1990 .

[68]  Rasheeduzzafar,et al.  Performance of Corrosion-Resisting Steels in Chloride-Bearing Concrete , 1992 .

[69]  H. Videla Microbially induced corrosion: an updated overview , 2001 .

[70]  L. J. Parrott,et al.  Moisture profiles in drying concrete , 1988 .

[71]  Sebastián Feliu,et al.  The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion , 1993 .

[72]  B. Little,et al.  Advantages of environmental scanning electron microscopy in studies of microorganisms , 1993, Microscopy research and technique.

[73]  B. W. Forgeson,et al.  Corrosion of Metals in Tropical Environments , 1960 .

[74]  Initial efforts to evaluate the corrosion problems in the infrastructure of Mexican southeast coastal zones , 1995 .

[75]  S. Dexter,et al.  Effect of marine biofilms on cathodic protection , 1992 .

[76]  F. H. Dakhil,et al.  Use of Surface Treatment Materials to Improve Concrete Durability , 1999 .

[77]  V. Gouda Corrosion and Corrosion Inhibition of Reinforcing Steel: I. Immersed in Alkaline Solutions , 1970 .

[78]  H. Videla An overview of mechanisms by which sulphate‐reducing bacteria influence corrosion of steel in marine environments , 2000, Biofouling.

[79]  K. Hladky,et al.  THE MEASUREMENT OF CORROSION USING ELECTROCHEMICAL 1/f NOISE , 1999 .

[80]  M. Morcillo Atmospheric Corrosion in Ibero-America: The MICAT Project , 1995 .

[81]  Ns Berke,et al.  Electrochemical Methods of Determining the Corrosivity of Steel in Concrete , 1990 .

[82]  Wenyue Zheng,et al.  Hydrogen embrittlement susceptibility of galvanized 4135 steel in cement environment , 1993 .

[83]  P. Tumidajski Electrical conductivity of Portland cement mortars , 1996 .

[84]  T. Graedel,et al.  Gildes model studies of aqueous chemistry. II. The corrosion of zinc in gaseous exposure chambers , 1996 .

[85]  A C Smith,et al.  CORROSION OF STEEL BY CONCRETE , 1982 .

[86]  Robert G. J. Edyvean,et al.  Biologically enhanced corrosion fatigue , 1988 .

[87]  Brenda J. Little,et al.  INTERRELATIONSHIP BETWEEN MARINE BIOFOULING AND CATHODIC PROTECTION , 1993 .

[88]  G. Licina,et al.  Electrochemical aspects of microbially induced corrosion , 1990 .

[89]  N. C. Webb Cathodic protection of reinforced concrete , 1992 .

[90]  Godfrey,et al.  FIBER REINFORCED CONCRETE , 1982 .

[91]  Jan-Erik Svensson,et al.  A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc , 1993 .

[92]  J. Bown,et al.  The Corrosion of Mild Steel by Biogenic Sulfide Films Exposed to Air , 1984 .

[93]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[94]  P. Roberge,et al.  Aerosol transport modeling as an aid to understanding atmospheric corrosivity patterns , 1999 .

[95]  H. Videla,et al.  ASSESSMENT OF CORROSION AND MICROFOULING OF SEVERAL METALS IN POLLUTED SEAWATER , 1988 .

[96]  Manuel Morcillo,et al.  Effect of marine aerosol on atmospheric corrosion , 1999 .

[97]  Aerosols: An industrial and environmental science , 1985 .

[98]  S. El-Belbol Cathodic protection of steel in concrete. , 2002, Health estate.

[99]  R. Edyvean Biodeterioration problems of North Sea oil and gas production: A review , 1987 .

[100]  W. G. Characklis,et al.  Corrosion of mild steel under anaerobic biofilm , 1993 .

[101]  H. Townsend Atmospheric corrosion resistance of skyward- and groundward-exposed surfaces of zinc- and 55% Al-Zn alloy-coated steel sheet , 1998 .

[102]  ROBERT. F. LEGGET,et al.  American Society for Testing and Materials , 1964, Nature.

[103]  H. Videla 1 – BIOCORROSION PROBLEMS IN THE MARINE ENVIRONMENT: NEW PERSPECTIVES , 1998 .

[104]  S. Mindess,et al.  Fiber-reinforced cementitious materials , 1991 .

[105]  W. G. Characklis,et al.  Corrosion of mild steel underneath aerobic biofilms containing sulfate‐reducing bacteria part II: At high dissolved oxygen concentration , 1993 .

[106]  C. Hansson,et al.  Ion-conduction in cement-based materials , 1985 .

[107]  Koji Hashimoto,et al.  THE MECHANISM OF ATMOSPHERIC RUSTING AND THE PROTECTIVE AMORPHOUS RUST ON LOW ALLOY STEEL , 1974 .

[108]  J. Hazan,et al.  Corrosion of protected aluminum and zinc , 1993 .