ImAxes: Immersive Axes as Embodied Affordances for Interactive Multivariate Data Visualisation

We introduce ImAxes immersive system for exploring multivariate data using fluid, modeless interaction. The basic interface element is an embodied data axis. The user can manipulate these axes like physical objects in the immersive environment and combine them into sophisticated visualisations. The type of visualisation that appears depends on the proximity and relative orientation of the axes with respect to one another, which we describe with a formal grammar. This straight-forward composability leads to a number of emergent visualisations and interactions, which we review, and then demonstrate with a detailed multivariate data analysis use case.

[1]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[2]  John A. King,et al.  Embodying Compassion: A Virtual Reality Paradigm for Overcoming Excessive Self-Criticism , 2014, PloS one.

[3]  Hanspeter Pfister,et al.  Domino: Extracting, Comparing, and Manipulating Subsets Across Multiple Tabular Datasets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[4]  Tamara Munzner,et al.  Empirical Guidance on Scatterplot and Dimension Reduction Technique Choices , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Robert Kosara Indirect multi-touch interaction for brushing in parallel coordinates , 2011, Electronic Imaging.

[6]  Paul Dourish,et al.  Where the action is , 2001 .

[7]  Pierre Dragicevic,et al.  Evaluating the efficiency of physical visualizations , 2013, CHI.

[8]  Deborah F. Swayne,et al.  Data Visualization With Multidimensional Scaling , 2008 .

[9]  Mel Slater,et al.  A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments , 1997, Presence: Teleoperators & Virtual Environments.

[10]  Bernhard Hohmann,et al.  Cityfit - High-Quality Urban Reconstruction by Fitting Shape Grammars to Image and derived Textured Point Clouds , 2008 .

[11]  Ulrik Brandes,et al.  Visual Understanding of Metabolic Pathways Across Organisms Using Layout in Two and a Half Dimensions , 2004 .

[12]  John T. Stasko,et al.  Expanding Selection for Information Visualization Systems on Tablet Devices , 2016, ISS.

[13]  K. Felmingham,et al.  Reduced Amygdala and Ventral Striatal Activity to Happy Faces in PTSD Is Associated with Emotional Numbing , 2014, PloS one.

[14]  Niklas Elmqvist,et al.  Fluid interaction for information visualization , 2011, Inf. Vis..

[15]  Gerald Schaefer,et al.  Immersive browsing in an image sphere , 2017, IMCOM.

[16]  M. Sheelagh T. Carpendale,et al.  VisLink: Revealing Relationships Amongst Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Arvind Satyanarayan,et al.  Lyra: An Interactive Visualization Design Environment , 2014, Comput. Graph. Forum.

[18]  Pierre Dragicevic,et al.  Tangible remote controllers for wall-size displays , 2012, CHI.

[19]  Gudrun Klinker,et al.  Augmented reality as a comparison tool in automotive industry , 2006, 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality.

[20]  Kim Marriott,et al.  A survey of visual language specification and recognition , 1998 .

[21]  Matthias Klapperstück,et al.  Immersive Analytics , 2015, 2015 Big Data Visual Analytics (BDVA).

[22]  Jarke J. van Wijk,et al.  Flexible Linked Axes for Multivariate Data Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[23]  Akira Kageyama,et al.  EVisualization of Vector Field by Virtual Reality , 2000 .

[24]  M. Sheelagh T. Carpendale,et al.  Immersive Analytics: Exploring Future Interaction and Visualization Technologies for Data Analytics , 2016, ISS.

[25]  Alfred Inselberg,et al.  Multidimensional detective , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[26]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[27]  Paulo Cortez,et al.  Modeling wine preferences by data mining from physicochemical properties , 2009, Decis. Support Syst..

[28]  William Ribarsky,et al.  Visualization and analysis using virtual reality , 1994, IEEE Computer Graphics and Applications.

[29]  Pierre Dragicevic,et al.  An Interaction Model for Visualizations Beyond The Desktop , 2013, IEEE Transactions on Visualization and Computer Graphics.

[30]  Fabien Picarougne,et al.  Visual Community Detection: An Evaluation of 2D, 3D Perspective and 3D Stereoscopic Displays , 2011, Graph Drawing.

[31]  Bruce H. Thomas,et al.  Using Augmented Reality to Visualise Architecture Designs in an Outdoor Environment , 1999 .

[32]  Akira Kageyama,et al.  Visualization of Vector Field by Virtual Reality , 2000 .

[33]  Melanie Tory,et al.  Visualization task performance with 2D, 3D, and combination displays , 2006, IEEE Transactions on Visualization and Computer Graphics.

[34]  Charles Perin,et al.  Exploring the Possibilities of Embedding Heterogeneous Data Attributes in Familiar Visualizations , 2017, IEEE Transactions on Visualization and Computer Graphics.

[35]  Timothy Cribbin,et al.  Mapping semantic information in virtual space: dimensions, variance and individual differences , 2000, Int. J. Hum. Comput. Stud..

[36]  William A. Wallace,et al.  The Effects of 3D Imagery on Managerial Data Interpretation , 1986, MIS Q..

[37]  M. Sheelagh T. Carpendale,et al.  Beyond Mouse and Keyboard: Expanding Design Considerations for Information Visualization Interactions , 2012, IEEE Transactions on Visualization and Computer Graphics.

[38]  Andreas Buja,et al.  Interactive data visualization using focusing and linking , 1991, Proceeding Visualization '91.

[39]  Harvey S. Smallman,et al.  Tactical Routing Using Two-Dimensional and Three-Dimensional Views of Terrain , 2001 .

[40]  Tim Dwyer,et al.  Design space for spatio-data coordination: Tangible interaction devices for immersive information visualisation , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[41]  Mark Bailey,et al.  The Grammar of Graphics , 2007, Technometrics.

[42]  Carolina Cruz-Neira,et al.  XGobi vs the C2: Results of an experiment comparing data visualization in a 3-D immersive virtual reality environment with a 2-D workstation display , 1999, Comput. Stat..

[43]  Frederick P. Brooks,et al.  Moving objects in space: exploiting proprioception in virtual-environment interaction , 1997, SIGGRAPH.

[44]  Johanna Beyer,et al.  The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality? , 2018, IEEE Transactions on Visualization and Computer Graphics.

[45]  Regis Kopper,et al.  Comparison of interactive environments for the archaeological exploration of 3D landscape data , 2014, 2014 IEEE VIS International Workshop on 3DVis (3DVis).

[46]  Colin Ware,et al.  Viewing a graph in a virtual reality display is three times as good as a 2D diagram , 1994, Proceedings of 1994 IEEE Symposium on Visual Languages.

[47]  Thomas E. Levy,et al.  ArtifactVis2: Managing real-time archaeological data in immersive 3D environments , 2013, 2013 Digital Heritage International Congress (DigitalHeritage).

[48]  Benjamin D. Greenberg,et al.  An immersive virtual environment for DT-MRI volume visualization applications: a case study , 2001, Proceedings Visualization, 2001. VIS '01..

[49]  Orit Shaer,et al.  Reality-based interaction: a framework for post-WIMP interfaces , 2008, CHI.

[50]  Colin Ware,et al.  Reevaluating stereo and motion cues for visualizing graphs in three dimensions , 2005, APGV '05.

[51]  Mel Slater,et al.  The Sense of Embodiment in Virtual Reality , 2012, PRESENCE: Teleoperators and Virtual Environments.

[52]  Olaf Kolditz,et al.  Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches , 2014, Environmental Earth Sciences.

[53]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[54]  Bormin Huang,et al.  Visual analytics of terrestrial lidar data for cliff erosion assessment on large displays , 2011, Optical Engineering + Applications.

[55]  Mel Slater,et al.  A note on presence terminology , 2003 .

[56]  C D Wickens,et al.  Implications of Graphics Enhancements for the Visualization of Scientific Data: Dimensional Integrality, Stereopsis, Motion, and Mesh , 1994, Human factors.

[57]  Steve Bryson Virtual reality in scientific visualization , 1993, Comput. Graph..

[58]  Ernestina Menasalvas Ruiz,et al.  New insights into the suitability of the third dimension for visualizing multivariate/multidimensional data: A study based on loss of quality quantification , 2016, Inf. Vis..

[59]  C. Ware,et al.  Filtering and Brushing with Motion , 2002 .

[60]  William W. Gaver Technology affordances , 1991, CHI.

[61]  Rita L. Sallam,et al.  Magic Quadrant for Business Intelligence and Analytics Platforms , 2013 .

[62]  Harvey S. Smallman,et al.  The Use of 2D and 3D Displays for Shape-Understanding versus Relative-Position Tasks , 2001, Hum. Factors.

[63]  Gregorij Kurillo,et al.  Telearch - Integrated visual simulation environment for collaborative virtual archaeology. , 2012 .

[64]  Luc Van Gool,et al.  Procedural modeling of buildings , 2006, ACM Trans. Graph..

[65]  Boris Müller,et al.  Probing Projections: Interaction Techniques for Interpreting Arrangements and Errors of Dimensionality Reductions , 2016, IEEE Transactions on Visualization and Computer Graphics.