Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis.

[1]  S. Blankenberg,et al.  Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. , 2018, European heart journal.

[2]  Rachel C. Bandler,et al.  microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[3]  M. Mayr,et al.  MicroRNAs in Cardiovascular Disease. , 2016, Journal of the American College of Cardiology.

[4]  A. Näär,et al.  MicroRNA-33 Regulates the Innate Immune Response via ATP Binding Cassette Transporter-mediated Remodeling of Membrane Microdomains * , 2016, The Journal of Biological Chemistry.

[5]  K. Moore,et al.  MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. , 2015, The Journal of clinical investigation.

[6]  Mary-Ellen Harper,et al.  Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti‐miR33 in atherosclerosis , 2015, Circulation research.

[7]  D. Rader,et al.  HDL and cardiovascular disease , 2014, The Lancet.

[8]  M. Mayr,et al.  Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice , 2014, EMBO molecular medicine.

[9]  Á. Baldán,et al.  Control of Very Low-Density Lipoprotein Secretion by N-Ethylmaleimide-Sensitive Factor and miR-33 , 2014, Circulation research.

[10]  Takeshi Kimura,et al.  MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo , 2014, Scientific Reports.

[11]  D. Rader,et al.  Future of cholesteryl ester transfer protein inhibitors. , 2014, Annual review of medicine.

[12]  Takeshi Kimura,et al.  MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice , 2013, Nature Communications.

[13]  S. Kauppinen,et al.  Pharmacological Inhibition of a MicroRNA Family in Nonhuman Primates by a Seed-Targeting 8-Mer AntimiR , 2013, Science Translational Medicine.

[14]  J. Chiang,et al.  Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α‐hydroxylase/steroid response element‐binding protein 2/microRNA‐33a axis in mice , 2013, Hepatology.

[15]  G. Kroemer,et al.  Mechanisms of apoptotic phosphatidylserine exposure , 2013, Cell Research.

[16]  C. Ramírez,et al.  Therapeutic Silencing of MicroRNA-33 Inhibits the Progression of Atherosclerosis in Ldlr−/− Mice—Brief Report , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[17]  R. de Cabo,et al.  A Regulatory Role for MicroRNA 33* in Controlling Lipid Metabolism Gene Expression , 2013, Molecular and Cellular Biology.

[18]  A. Lusis,et al.  Anti-miR-33 Therapy Does Not Alter the Progression of Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[19]  L. Goedeke,et al.  MicroRNAs in metabolic disease. , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[20]  Takeshi Kimura,et al.  MicroRNA-33 Deficiency Reduces the Progression of Atherosclerotic Plaque in ApoE−/− Mice , 2012, Journal of the American Heart Association.

[21]  F. Suchy,et al.  miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity , 2012, EMBO molecular medicine.

[22]  Zahi A Fayad,et al.  Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. , 2012, Circulation.

[23]  Aaron N. Chang,et al.  Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. , 2011, The Journal of clinical investigation.

[24]  K. Moore,et al.  miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling , 2011, Proceedings of the National Academy of Sciences.

[25]  K. Moore,et al.  MicroRNAs in lipid metabolism , 2011, Current opinion in lipidology.

[26]  Takeshi Kimura,et al.  MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo , 2010, Proceedings of the National Academy of Sciences.

[27]  I. Gérin,et al.  Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation* , 2010, The Journal of Biological Chemistry.

[28]  Daniel S. Ory,et al.  miR-33 links SREBP-2 induction to repression of sterol transporters , 2010, Proceedings of the National Academy of Sciences.

[29]  T. Shioda,et al.  MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol Homeostasis , 2010, Science.

[30]  K. Moore,et al.  MiR-33 Contributes to the Regulation of Cholesterol Homeostasis , 2010, Science.

[31]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[32]  A. Tall,et al.  HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. , 2008, Cell metabolism.

[33]  Stanley L. Hazen,et al.  Oxidized phosphatidylserine–CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells , 2006, The Journal of experimental medicine.

[34]  Roger A. Davis,et al.  Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ , 2004 .

[35]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[36]  Joseph L Goldstein,et al.  SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. , 2002, The Journal of clinical investigation.

[37]  A. Shiratsuchi,et al.  Essential role of phosphatidylserine externalization in apoptosing cell phagocytosis by macrophages. , 1998, Biochemical and biophysical research communications.

[38]  Ryan E. Temel,et al.  Inhibition of miR-33 a / b in non-human primates raises plasma HDL and lowers VLDL triglycerides , 2011 .

[39]  Roger A. Davis,et al.  Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. , 2004, The Journal of clinical investigation.