Dynamic Critical Behavior of the Chayes–Machta Algorithm for the Random-Cluster Model, I. Two Dimensions

We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes–Machta dynamics for the Fortuin–Kasteleyn random-cluster model, which generalizes the Swendsen–Wang dynamics for the q-state Potts ferromagnet to non-integer q≥1. We consider spatial dimension d=2 and 1.25≤q≤4 in steps of 0.25, on lattices up to 10242, and obtain estimates for the dynamic critical exponent zCM. We present evidence that when 1≤q≲1.95 the Ossola–Sokal conjecture zCM≥β/ν is violated, though we also present plausible fits compatible with this conjecture. We show that the Li–Sokal bound zCM≥α/ν is close to being sharp over the entire range 1≤q≤4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.

[1]  T. W. Anderson,et al.  Statistical analysis of time series , 1972 .

[2]  C. Fortuin On the random-cluster model: III. The simple random-cluster model , 1972 .

[3]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[4]  A. Sokal,et al.  Critical behavior of the Chayes-Machta-Swendsen-Wang dynamics. , 2007, Physical review letters.

[5]  Exact finite-size-scaling corrections to the critical two-dimensional Ising model on a torus , 2000, cond-mat/0009054.

[6]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[7]  A. Sokal,et al.  Dynamic critical behavior of the Swendsen-Wang algorithm for the three-dimensional Ising model , 2004, hep-lat/0402019.

[8]  Alan D. Sokal,et al.  Logarithmic Corrections and Finite-Size Scaling in the Two-Dimensional 4-State Potts Model , 1996 .

[9]  Cécile DeWitt-Morette,et al.  Functional integration : basics and applications , 1997 .

[10]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[11]  K. Binder,et al.  The Monte Carlo Method in Condensed Matter Physics , 1992 .

[12]  Fred Cooper,et al.  Solving φ1,24 field theory with Monte Carlo , 1982 .

[13]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[14]  Guo,et al.  Hyperuniversality and the renormalization group for finite systems. , 1987, Physical review. B, Condensed matter.

[15]  Coddington,et al.  Empirical relations between static and dynamic exponents for Ising model cluster algorithms. , 1992, Physical review letters.

[16]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[17]  Ray,et al.  Mean-field study of the Swendsen-Wang dynamics. , 1989, Physical review. A, General physics.

[18]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[20]  J. Zuber,et al.  Critical Ising correlation functions in the plane and on the torus , 1987 .

[21]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .

[22]  Jonathan Machta,et al.  GRAPHICAL REPRESENTATIONS AND CLUSTER ALGORITHMS II , 1998 .

[23]  J. Zuber,et al.  CORRELATION FUNCTIONS OF THE CRITICAL ISING MODEL ON A TORUS , 1988 .

[24]  Kanter,et al.  Mean-field behavior of cluster dynamics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  F. Y. Wu Potts model of magnetism (invited) , 1984 .

[26]  K. Binder Applications of the Monte Carlo Method in Statistical Physics , 2012 .

[27]  V. Beara The self-dual point of the two-dimensional random-cluster model is critical for q > 1 , 2011 .

[28]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[29]  Youjin Deng,et al.  Percolation transitions in two dimensions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[31]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[32]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[33]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[34]  Li,et al.  Rigorous lower bound on the dynamic critical exponents of the Swendsen-Wang algorithm. , 1989, Physical review letters.

[35]  Scaling Ansatz for Swendsen-Wang dynamics. , 1989, Physical review letters.

[36]  A. D. Sokal,et al.  Dynamic critical behavior of a Swendsen-Wang-Type algorithm for the Ashkin-Teller model , 1996 .

[37]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[38]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[39]  M. Fisher,et al.  Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .

[40]  F. Y. Wu The Potts model , 1982 .

[41]  Alan D. Sokal,et al.  Dynamic critical behavior of the Swendsen-Wang algorithm: The two-dimensional three-state Potts model revisited , 1997 .

[42]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[43]  C. Fortuin,et al.  On the random-cluster model II. The percolation model , 1972 .

[44]  Blöte,et al.  Corrections to scaling at two-dimensional Ising transitions. , 1988, Physical review. B, Condensed matter.

[45]  Giovanni Ossola,et al.  Systematic errors due to linear congruential random-number generators with the Swendsen-Wang algorithm: a warning. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  S. Caracciolo,et al.  Wolff-type embedding algorithms for general nonlinear σ-models , 1992, hep-lat/9205005.

[47]  Alan D. Sokal,et al.  Universal Amplitude Ratios in the Critical Two-Dimensional Ising Model on a Torus , 2000 .

[48]  M. Nijs Extended scaling relations for the magnetic critical exponents of the Potts model , 1983 .