Modelling and interpreting the dependence of clustering on the spectral energy distributions of galaxies

We extend our previous physically based halo occupation distribution models to include the dependence of clustering on the spectral energy distributions of galaxies. The high-resolution Millennium Simulation is used to specify the positions and the velocities of the model galaxies. The stellar mass of a galaxy is assumed to depend only on M infall , the halo mass when the galaxy was last the central dominant object of its halo. Star formation histories are parametrized using two additional quantities that are measured from the simulation for each galaxy: its formation time (t from ), and the time when it first becomes a satellite (t infall ). Central galaxies begin forming stars at time t form with an exponential time-scale τ c· If the galaxy becomes a satellite, its star formation declines thereafter with a new time-scale T s· We compute 4000-A break strengths for our model galaxies using stellar population synthesis models. By fitting these models to the observed abundances and projected correlations of galaxies as a function of break strength in the Sloan Digital Sky Survey, we constrain τ c and τ s as functions of galaxy stellar mass. We find that central galaxies with large stellar masses have ceased forming stars. At low stellar masses, central galaxies display a wide range of different star formation histories, with a significant fraction experiencing recent starbursts. Satellite galaxies of all masses have declining star formation rates, with similar e-folding times, τ s ∼ 2.5 Gyr. One consequence of this long e-folding time is that the colour-density relation is predicted to flatten at redshifts > 1.5, because star formation in the majority of satellites has not yet declined by a significant factor. This is consistent with recent observational results from the DEEP and VVDS surveys.

[1]  D. Croton,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – II. Active galactic nucleus feedback and star formation truncation , 2006 .

[2]  J. Newman,et al.  The DEEP2 galaxy redshift survey: evolution of the colour–density relation at 0.4 < z < 1.35 , 2006, astro-ph/0607512.

[3]  G. Kauffmann,et al.  The clustering of narrow-line AGN in the local universe , 2006, astro-ph/0607492.

[4]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[5]  R. Davé,et al.  Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi‐analytic model and cosmological SPH simulations , 2006, astro-ph/0605750.

[6]  G. Kauffmann,et al.  Modelling galaxy clustering in a high-resolution simulation of structure formation , 2006, astro-ph/0603546.

[7]  B. Garilli,et al.  The VIMOS VLT Deep Survey: The build-up of the colour-density relation , 2006, astro-ph/0603202.

[8]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[9]  J. Silk,et al.  Massive and Red Objects Predicted by a Semianalytical Model of Galaxy Formation , 2006, astro-ph/0601685.

[10]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[11]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[12]  J. Brinkmann,et al.  Gas infall and stochastic star formation in galaxies in the local universe , 2005, astro-ph/0510405.

[13]  G. Kauffmann,et al.  The dependence of clustering on galaxy properties , 2005, astro-ph/0509873.

[14]  G. Kauffmann,et al.  The dependence of the pairwise velocity dispersion on galaxy properties , 2005, astro-ph/0509874.

[15]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[16]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[17]  J. Peacock,et al.  Galaxy clustering from COMBO-17: the halo occupation distribution at = 0.6 , 2005, astro-ph/0506320.

[18]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[19]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[20]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[21]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[22]  J. Brinkmann,et al.  Angular Clustering with Photometric Redshifts in the Sloan Digital Sky Survey: Bimodality in the Clustering Properties of Galaxies , 2003, astro-ph/0305603.

[23]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[24]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type , 2003, astro-ph/0303668.

[25]  H. Mo,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[26]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[27]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[28]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[29]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[30]  et al,et al.  Galaxy Clustering in Early SDSS Redshift Data , 2001, astro-ph/0106476.

[31]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[32]  G. Kauffmann,et al.  The spatial and kinematic distributions of cluster galaxies in a ΩCDM universe: comparison with observations , 2000, astro-ph/0005485.

[33]  C. Baugh,et al.  The dependence of velocity and clustering statistics on galaxy properties , 1999, astro-ph/9910488.

[34]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[35]  S. Maddox,et al.  Spectral analysis of the Stromlo–APM Survey – II. Galaxy luminosity function and clustering by spectral type , 1999, astro-ph/9905385.

[36]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[37]  P. Pellegrini,et al.  Southern Sky Redshift Survey: Clustering of Local Galaxies , 1998, astro-ph/9803118.

[38]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[39]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[40]  S. Maddox,et al.  The Stromlo-APM Redshift Survey II. Variation of Galaxy Clustering with Morphology and Luminosity , 1994 .

[41]  Changbom Park,et al.  Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey , 1994 .

[42]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[43]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[44]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[45]  A. Hamilton,et al.  Evidence for biasing in the CfA survey , 1988 .

[46]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[47]  Marc Davis,et al.  Galaxy Correlations as a Function of Morphological Type , 1975 .

[48]  G. Abell The Distribution of rich clusters of galaxies , 1958 .

[49]  E. Hubble The Realm of the Nebulæ , 1956, Nature.