A far infrared laser sideband spectrometer in the frequency region 550-2700 GHz

This paper describes a tunable far‐infrared (FIR) spectrometer. Tunable radiation is obtained by frequency mixing, fixed frequency FIR laser radiation and tunable microwave radiation in Schottky barrier diodes. An optically pumped laser and an HCN discharge laser are used as FIR sources and klystrons in the frequency range of 22–114 GHz as microwave sources. This yields an 85% coverage of the frequency region between 550 and 2700 GHz. Up to sixth order sidebands have been generated and used for spectroscopy. The ultimate sensitivity corresponds to a minimum detectable fractional absorption of 10−5 at 1‐s RC time. The applicability of the spectrometer in high‐resolution spectroscopy of transient species has been demonstrated by the observation of spectra of OD and N2H+. New laser emissions of optically pumped CH2F2 have been found and accurate frequencies have been determined for some of them.

[1]  John M. Brown,et al.  The far-infrared laser magnetic resonance spectra of the OD radical in ground and vibrationally excited states , 1985 .

[2]  K. Evenson,et al.  Frequencies of cw FIR laser lines from optically pumped CH2F2 , 1980 .

[3]  Didier Dangoisse,et al.  Heterodyne detection of tunable FIR sidebands , 1987 .

[4]  D. Hodges,et al.  High-power operation and scaling behavior of CW optically pumped FIR waveguide lasers , 1977 .

[5]  Kenneth M. Evenson,et al.  High-resolution spectroscopy of HF from 40 to 1100 cm−1: highly accurate rotational constants , 1987 .

[6]  G. V. Schultz,et al.  Properties of a submillimetre mixer in an open structure configuration , 1978 .

[7]  T. Bridges,et al.  Laser action at 452, 496, and 541 μm in optically pumped CH3F , 1970 .

[8]  D. T. Hodges,et al.  Waveguide laser for the far infrared (FIR) pumped by a CO2 laser , 1973 .

[9]  J. W. C. Johns,et al.  High-resolution far-infrared (20–350-cm −1 ) spectra of several isotopic species of H 2 O , 1985 .

[10]  D. T. Hodges,et al.  Efficient high‐power operation of the cw far‐infrared waveguide laser , 1976 .

[11]  Frank C. De Lucia,et al.  Continuously tunable coherent spectroscopy for the 0.1–1.0‐THz region , 1983 .

[12]  P. Thaddeus,et al.  Confirmation of interstellar N2H , 1975 .

[13]  Richard T. Hall,et al.  Pure Rotational Spectrum of Water Vapor , 1967 .

[14]  Paul F. Goldsmith,et al.  Tunable submillimeter sources applied to the excited state rotational spectroscopy and kinetics of CH3F , 1979 .

[15]  G. V. Schultz,et al.  Antenna characteristics of whisker diodes used as submillimeter receivers , 1977 .

[16]  A. F. Krupnov,et al.  Inversion and inversion-rotation spectrum of 14NH3 in the ν2 excited state , 1980 .

[17]  B. Turner U93.174: A new interstellar line with quadrupole hyperfine splitting , 1974 .

[18]  D. Bićanić,et al.  Some experiments with the 4-m c.w.-HCN laser , 1974 .

[19]  M. A. Frerking,et al.  Generation Of Tunable Laser Sidebands In The Far-Infrared Region , 1986, Other Conferences.

[20]  K. Evenson,et al.  Tunable far-infrared spectroscopy , 1984 .

[21]  R. C. Cohen,et al.  Tunable far infrared laser spectroscopy of van der Waals bonds: Vibration–rotation–tunneling spectra of Ar–H2O , 1988 .

[22]  E. Herbst,et al.  Millimeter and submillimeter spectra of HN+2and DN+2 , 1981 .

[23]  W. Meerts,et al.  High-resolution tunable spectroscopy of rotational transitions of NO near 30 cm−1 , 1980 .

[24]  E. Hirota Microwave spectrum of methylene fluoride in excited vibrational states , 1975 .

[25]  B. Clifton Schottky-Barrier Diodes for Submillimeter Heterodyne Detection , 1977 .

[26]  R. Abrams,et al.  Coupling losses in hollow waveguide laser resonators , 1972 .

[27]  R. Saykally,et al.  Laboratory Microwave Spectrum and Rest Frequencies of the N2H(+) Ion , 1976 .

[28]  John M. Brown,et al.  The EPR spectrum of the OD radical: A determination of molecular parameters for the ground state , 1982 .

[29]  Dane D. Bicanic,et al.  Generation of continuously tunable laser sidebands in the submillimeter region , 1978 .

[30]  M. Versluis,et al.  Far infrared laser sideband spectroscopy of H3O+: the pure inversion spectrum around 55 cm-1 , 1989 .

[31]  Henry Jasik,et al.  Antenna engineering handbook , 1961 .

[32]  P. Verhoeve,et al.  Far-infrared spectroscopy on OD+ , 1986 .

[33]  A. Mckellar,et al.  The ν3 fundamental bands of HN+2, DN+2, and DCO+ , 1984 .

[34]  N. R. Erickson,et al.  A Directional Filter Diplexer Using Optical Techniques for Millimeter to Submillimeter Wavelengths , 1977 .

[35]  A. Javan,et al.  Generation of infrared radiation in a metal-to-metal point-contact diode at synthesized frequencies of incident fields - A high-speed broad-band light modulator. , 1972 .

[36]  A. Dymanus,et al.  Observation of far-infrared transitions of HCO+, CO+ and HN+2 , 1982 .

[37]  Kenneth M. Evenson,et al.  IMPROVED COUPLING TO INFRARED WHISKER DIODES BY USE OF ANTENNA THEORY , 1970 .