Photobrightening and photodarkening in PbS quantum dots.

Fluorescence spectroscopy is utilized to investigate photodarkening and photobrightening behaviors in PbS quantum dots (QDs) subjected to various environmental conditions. We are able to separate contributions from charge trapping to a long-lived optically dark state (single particle fluorescence blinking) and irreversible photooxidation to the overall photodarkening behavior. Both processes produce effects that are potentially detrimental for emission-based technological applications. Charge trapping is the dominant mechanism on short time scales (<3 s), exhibits no particle size- or environmental-dependence, is reversible, and is an order of magnitude faster compared to CdSe QDs. Photooxidation is the dominant mechanism on long time scales (50-100 s), is strongly dependent on particle size and environmental atmosphere, and results in irreversible decreases in emission intensity, large blue shifts of emission maximum, and increases in particle size distribution.

[1]  T. Krauss,et al.  Fluorescence spectroscopy of single lead sulfide quantum dots. , 2006, Nano letters.

[2]  M. Beard,et al.  PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. , 2006, Journal of the American Chemical Society.

[3]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[4]  T. Möller,et al.  Photoelectron spectroscopic investigations of chemical bonding in organically stabilized PbS nanocrystals. , 2005, The journal of physical chemistry. B.

[5]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[6]  E. Sargent Infrared Quantum Dots , 2005 .

[7]  A. Eychmüller,et al.  Size-dependent electrochemical behavior of thiol-capped CdTe nanocrystals in aqueous solution. , 2005, The journal of physical chemistry. B.

[8]  J. Chon,et al.  Two-photon-induced photoenhancement of densely packed CdSe/ZnSe/ZnS nanocrystal solids and its application to multilayer optical data storage , 2004 .

[9]  Moungi G. Bawendi,et al.  Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots , 2004 .

[10]  Mingyuan Gao,et al.  Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core−Shell Structure , 2004 .

[11]  Edward H. Sargent,et al.  PbS Quantum Dots with Stable Efficient Luminescence in the Near‐IR Spectral Range , 2004 .

[12]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[13]  R. Schaller,et al.  Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals , 2003 .

[14]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[15]  V. Bulović,et al.  1.3 μm to 1.55 μm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device , 2003 .

[16]  Masahiko Hara,et al.  Surface State Analysis of Photobrightening in CdSe Nanocrystal Thin Films , 2003 .

[17]  J. Nedeljković,et al.  Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions , 2003 .

[18]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[19]  Ariel Kigel,et al.  Synthesis and Characterization of PbSe Quantum Wires, Multipods, Quantum Rods, and Cubes , 2003 .

[20]  E. Sargent,et al.  Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer , 2003 .

[21]  Frank W. Wise,et al.  Optical Properties of Colloidal PbSe Nanocrystals , 2002 .

[22]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[23]  Wilfried van Sark,et al.  Photooxidation and Photobleaching of Single CdSe/ZnS Quantum Dots Probed by Room-Temperature Time-Resolved Spectroscopy , 2001 .

[24]  Robert Neuhauser,et al.  Blinking statistics in single semiconductor nanocrystal quantum dots , 2001 .

[25]  C. Evans,et al.  Surface transformation and photoinduced recovery in CdSe nanocrystals. , 2001, Physical review letters.

[26]  Steven R. Cordero,et al.  Photo-activated luminescence of CdSe quantum dot monolayers , 2000 .

[27]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[28]  F. Wise,et al.  Lead salt quantum dots: the limit of strong quantum confinement. , 2000, Accounts of chemical research.

[29]  D. P. Fromm,et al.  Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior , 2000 .

[30]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[31]  M. Hochella,et al.  The calculation of STM images, STS spectra, and XPS peak shifts for galena: New tools for understanding mineral surface chemistry , 1996 .

[32]  B. Kim,et al.  Scanning Tunneling Microscopy Studies of Galena: The Mechanisms of Oxidation in Aqueous Solution , 1995 .

[33]  R. Smart,et al.  Oxidation of Galena Surfaces: I. X-Ray Photoelectron Spectroscopic and Dissolution Kinetics Studies , 1994 .

[34]  D. Hercules,et al.  Electron spectroscopy for chemical analysis studies of lead sulfide oxidation , 1978 .

[35]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..