Non-Bayesian Periodic Cramér-Rao Bound

The Cramér-Rao bound (CRB) is one of the most important tools for performance analysis in parameter estimation. In many practical periodic parameter estimation problems, the appropriate criterion is periodic in the parameter space. However, the CRB does not provide a valid lower bound in such problems. In this paper, the periodic CRB for non-Bayesian periodic parameter estimation is derived. The proposed periodic CRB is a lower bound on the mean-square-periodic-error (MSPE) of any periodic-unbiased estimator, where the periodic-unbiasedness is defined by using Lehmann-unbiasedness. It is shown that if there exists a periodic-unbiased estimator which achieves the bound, then the maximum likelihood produces it. The periodic CRB and the performance of some periodic-unbiased estimators are compared in terms of MSPE in a linear, Gaussian problem with modulo measurements and for phase estimation problems.

[1]  A. Bhattacharyya On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .

[2]  H. Cramér A contribution to the theory of statistical estimation , 1946 .

[3]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[4]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[5]  K. Mardia Statistics of Directional Data , 1972 .

[6]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[7]  Tretiak,et al.  Estimation for Rotational Processes with One Degree Sf Freedom-part I: Introduction and Contimuous-time Processes , 1975 .

[8]  M. Kupperman Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .

[9]  R. S. Bucy,et al.  An Optimal Phase Demodulator , 1975 .

[10]  James Ting-Ho Lo,et al.  Exponential Fourier densities and optimal estimation and detection on the circle , 1977, IEEE Trans. Inf. Theory.

[11]  L. Scharf,et al.  Modulo-2 Pi Phase Sequence Estimation. , 1978 .

[12]  Louis L. Scharf,et al.  Modulo-2 Pi phase sequence estimation (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[13]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[14]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[15]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[16]  H. Hendriks A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .

[17]  B.C. Lovell,et al.  The statistical performance of some instantaneous frequency estimators , 1992, IEEE Trans. Signal Process..

[18]  F. Ruymgaart,et al.  A Cramér-Rao type inequality for random variables in Euclidean manifolds , 1992 .

[19]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[20]  Arye Nehorai,et al.  Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..

[21]  I. Vaughan L. Clarkson,et al.  Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..

[22]  Umberto Mengali,et al.  The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..

[23]  Ruggero Reggiannini,et al.  A fundamental lower bound to the performance of phase estimators over Rician-fading channels , 1997, IEEE Trans. Commun..

[24]  Arye Nehorai,et al.  Performance bounds for estimating vector systems , 2000, IEEE Trans. Signal Process..

[25]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[26]  João M. F. Xavier,et al.  Intrinsic distance lower bound for unbiased estimators on Riemannian manifolds , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Steven Kay,et al.  Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[28]  Marvin K. Simon,et al.  Digital Communication Techniques: Signal Design and Detection , 2008 .

[29]  Kellen Petersen August Real Analysis , 2009 .

[30]  Y. Guo,et al.  MSE lower bounds for phase estimation based on overlapped Gaussian distribution , 2010, 2010 10th International Symposium on Communications and Information Technologies.

[31]  J. Tabrikian,et al.  Optimal Bayesian parameter estimation with periodic criteria , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[32]  Joseph Tabrikian,et al.  Periodic CRB for non-Bayesian parameter estimation , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  B. Gurion On The Existence of Uniformly Unbiased Estimators , 2011 .

[34]  Joseph Tabrikian,et al.  Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.

[35]  Eric Chaumette,et al.  New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.

[36]  E. Lehmann,et al.  Completeness, Similar Regions, and Unbiased Estimation—Part II , 2012 .

[37]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.