Non-Bayesian Periodic Cramér-Rao Bound
暂无分享,去创建一个
[1] A. Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability distributions , 1943 .
[2] H. Cramér. A contribution to the theory of statistical estimation , 1946 .
[3] E. Barankin. Locally Best Unbiased Estimates , 1949 .
[4] N. L. Johnson,et al. Linear Statistical Inference and Its Applications , 1966 .
[5] K. Mardia. Statistics of Directional Data , 1972 .
[6] Robert Boorstyn,et al. Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.
[7] Tretiak,et al. Estimation for Rotational Processes with One Degree Sf Freedom-part I: Introduction and Contimuous-time Processes , 1975 .
[8] M. Kupperman. Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .
[9] R. S. Bucy,et al. An Optimal Phase Demodulator , 1975 .
[10] James Ting-Ho Lo,et al. Exponential Fourier densities and optimal estimation and detection on the circle , 1977, IEEE Trans. Inf. Theory.
[11] L. Scharf,et al. Modulo-2 Pi Phase Sequence Estimation. , 1978 .
[12] Louis L. Scharf,et al. Modulo-2 Pi phase sequence estimation (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[13] John G. Proakis,et al. Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..
[14] M. Zakai,et al. Some Classes of Global Cramer-Rao Bounds , 1987 .
[15] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[16] H. Hendriks. A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .
[17] B.C. Lovell,et al. The statistical performance of some instantaneous frequency estimators , 1992, IEEE Trans. Signal Process..
[18] F. Ruymgaart,et al. A Cramér-Rao type inequality for random variables in Euclidean manifolds , 1992 .
[19] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[20] Arye Nehorai,et al. Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..
[21] I. Vaughan L. Clarkson,et al. Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..
[22] Umberto Mengali,et al. The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..
[23] Ruggero Reggiannini,et al. A fundamental lower bound to the performance of phase estimators over Rician-fading channels , 1997, IEEE Trans. Commun..
[24] Arye Nehorai,et al. Performance bounds for estimating vector systems , 2000, IEEE Trans. Signal Process..
[25] Yoram Bresler,et al. A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.
[26] João M. F. Xavier,et al. Intrinsic distance lower bound for unbiased estimators on Riemannian manifolds , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[27] Steven Kay,et al. Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[28] Marvin K. Simon,et al. Digital Communication Techniques: Signal Design and Detection , 2008 .
[29] Kellen Petersen August. Real Analysis , 2009 .
[30] Y. Guo,et al. MSE lower bounds for phase estimation based on overlapped Gaussian distribution , 2010, 2010 10th International Symposium on Communications and Information Technologies.
[31] J. Tabrikian,et al. Optimal Bayesian parameter estimation with periodic criteria , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.
[32] Joseph Tabrikian,et al. Periodic CRB for non-Bayesian parameter estimation , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[33] B. Gurion. On The Existence of Uniformly Unbiased Estimators , 2011 .
[34] Joseph Tabrikian,et al. Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.
[35] Eric Chaumette,et al. New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.
[36] E. Lehmann,et al. Completeness, Similar Regions, and Unbiased Estimation—Part II , 2012 .
[37] I. Vaughan L. Clarkson,et al. Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.