The Effect of Basis Set Superposition Error (BSSE) on the Convergence of Molecular Properties Calculated with the Correlation Consistent Basis Sets

[1]  T. Dunning,et al.  Ab initio characterization of the structure and energetics of the ArHF complex , 1997 .

[2]  Angela K. Wilson,et al.  Benchmark calculations with correlated molecular wave functions. X. Comparison with , 1997 .

[3]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon , 1996 .

[4]  F. Jensen THE MAGNITUDE OF INTRAMOLECULAR BASIS SET SUPERPOSITION ERROR , 1996 .

[5]  Sotiris S. Xantheas,et al.  On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy , 1996 .

[6]  T. H. Dunning,et al.  Ab initio investigation of the N2–HF complex: Accurate structure and energetics , 1996 .

[7]  David Feller,et al.  Hydrogen bond energy of the water dimer , 1996 .

[8]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[9]  Kirk A. Peterson,et al.  Intrinsic Errors in Several ab Initio Methods: The Dissociation Energy of N2 , 1995 .

[10]  Kirk A. Peterson,et al.  BENCHMARK CALCULATIONS WITH CORRELATED MOLECULAR WAVE FUNCTIONS. VII: BINDING ENERGY AND STRUCTURE OF THE HF DIMER , 1995 .

[11]  K. Peterson Accurate multireference configuration interaction calculations on the lowest 1Σ+ and 3Π electronic states of C2, CN+, BN, and BO+ , 1995 .

[12]  David E. Woon,et al.  Benchmark calculations with correlated molecular wave functions. VI. Second row A2 and first row/second row AB diatomic molecules , 1994 .

[13]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[14]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[15]  Peter J. Knowles,et al.  Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories , 1994 .

[16]  P. Taylor,et al.  Basis set convergence for geometry and harmonic frequencies. Are h functions enough , 1994 .

[17]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[18]  D. Woon Benchmark calculations with correlated molecular wave functions. V. The determination of accurate abinitio intermolecular potentials for He2, Ne2, and Ar2 , 1994 .

[19]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[20]  Rick A. Kendall,et al.  BENCHMARK CALCULATIONS WITH CORRELATED MOLECULAR WAVE FUNCTIONS. III: CONFIGURATION INTERACTION CALCULATIONS ON FIRST ROW HOMONUCLEAR DIATOMICS , 1993 .

[21]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[22]  T. Dunning,et al.  Calculation of the electron affinities of the second row atoms: Al–Cl , 1993 .

[23]  Rick A. Kendall,et al.  Benchmark calculations with correlated molecular wave functions. II. Configuration interaction calculations on first row diatomic hydrides , 1993 .

[24]  Thom H. Dunning,et al.  Benchmark calculations with correlated molecular wave functions. I: Multireference configuration interaction calculations for the second row diatomic hydrides , 1993 .

[25]  T. Dunning,et al.  Theoretical studies of sulfurous species of importance in atmospheric chemistry. 1. Characterization of the mercaptooxy (HSO) and hydroxythio (SOH) isomers , 1993 .

[26]  T. Dunning,et al.  The structure of the water trimer from ab initio calculations , 1993 .

[27]  David Feller,et al.  The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water , 1993 .

[28]  M. Gutowski,et al.  Critical evaluation of some computational approaches to the problem of basis set superposition error , 1993 .

[29]  István Mayer,et al.  Comparison of a posteriori and a priori BSSE correction schemes for SCF intermolecular energies , 1993, J. Comput. Chem..

[30]  Maciej Gutowski,et al.  Accuracy of the Boys and Bernardi function counterpoise method , 1993 .

[31]  D. Woon Accurate modeling of intermolecular forces: a systematic Møller-Plesset study of the argon dimer using correlation consistent basis sets , 1993 .

[32]  T. Dunning,et al.  Theoretical estimate of the enthalpy of formation of sulfhydryl radical (HSO) and HSO-SOH isomerization energy , 1993 .

[33]  Y. Bouteiller Basis set superposition error effects on νFX, νFX…N stretching modes of hydrogen-bonded systems FX…NCH (X=H, D) , 1992 .

[34]  F. B. van Duijneveldt,et al.  Convergence to the basis‐set limit in ab initio calculations at the correlated level on the water dimer , 1992 .

[35]  T. Dunning,et al.  Structures of anion-water clusters: H-(H2O)n, n = 1-3 , 1992 .

[36]  I. Mayer,et al.  A BSSE‐free SCF algorithm for intermolecular interactions. II. Sample calculations on hydrogen‐bonded complexes , 1992 .

[37]  F. B. Duijneveldt,et al.  Methods for the calculation of n OH in OH-O hydrogen bonds , 1992 .

[38]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[39]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[40]  Y. Bouteiller,et al.  Basis set superposition error effects on electronic and νFx, νF...N stretching modes of hydrogen bonded systems FX...NCX (X=H,D) , 1992 .

[41]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[42]  R. Eggenberger,et al.  Basis Set Superposition Errors in Intermolecular Structures and Force-Constants , 1991 .

[43]  I. Mayer,et al.  A BSSE-free SCF algorithm for intermolecular interactions , 1991 .

[44]  J. Noga,et al.  Second-order BSSE-free perturbation theory: intermolecular interactions within supermolecular approach , 1991 .

[45]  J. Cullen,et al.  An examination of the effects of basis set and charge transfer in hydrogen-bonded dimers with a constrained Hartree–Fock method , 1991 .

[46]  B. Roos,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[47]  P. Surján,et al.  Improved intermolecular SCF theory and the BSSE problem , 1989 .

[48]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[49]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[50]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[51]  M. Gutowski,et al.  THE BASIS SET SUPERPOSITION ERROR IN CORRELATED ELECTRONIC STRUCTURE CALCULATIONS , 1986 .

[52]  M. Newton,et al.  The water dimer: Theory versus experiment , 1983 .

[53]  P. Claverie,et al.  Perturbative ab initio calculations of intermolecular energies. I. Method , 1974 .

[54]  A. D. McLean,et al.  Accurate calculation of the attractive interaction of two ground state helium atoms , 1973 .

[55]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[56]  J. L. Dunham The Wentzel-Brillouin-Kramers Method of Solving the Wave Equation , 1932 .