<jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548320000279_inline1.png" /><jats:tex-math>
$\gamma(G)$
</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548320000279_inline2.png" /><jats:tex-math>
$${\gamma _ \circ }(G)$$
</jats:tex-math></jats:alternatives></jats:inline-formula> denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if <jats:italic>G</jats:italic> is an <jats:italic>n</jats:italic>-vertex graph of minimum degree at least <jats:italic>d</jats:italic>, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" mimetype="image" position="float" xlink:href="S0963548320000279_eqnu1.png" /><jats:tex-math>$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>In this paper the main result is that if <jats:italic>G</jats:italic> is any <jats:italic>n</jats:italic>-vertex <jats:italic>d</jats:italic>-regular graph of girth at least five, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" mimetype="image" position="float" xlink:href="S0963548320000279_eqnu2.png" /><jats:tex-math>$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula>for some constant <jats:italic>c</jats:italic> independent of <jats:italic>d</jats:italic>. This result is sharp in the sense that as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548320000279_inline3.png" /><jats:tex-math>
$d \rightarrow \infty$
</jats:tex-math></jats:alternatives></jats:inline-formula>, almost all <jats:italic>d</jats:italic>-regular <jats:italic>n</jats:italic>-vertex graphs G of girth at least five have<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" mimetype="image" position="float" xlink:href="S0963548320000279_eqnu3.png" /><jats:tex-math>$$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>Furthermore, if <jats:italic>G</jats:italic> is a disjoint union of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548320000279_inline4.png" /><jats:tex-math>
${n}/{(2d)}$
</jats:tex-math></jats:alternatives></jats:inline-formula> complete bipartite graphs <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548320000279_inline5.png" /><jats:tex-math>
$K_{d,d}$
</jats:tex-math></jats:alternatives></jats:inline-formula>, then <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548320000279_inline6.png" /><jats:tex-math>
${\gamma_\circ}(G) = \frac{n}{2}$
</jats:tex-math></jats:alternatives></jats:inline-formula>. We also prove that there are <jats:italic>n</jats:italic>-vertex graphs G of minimum degree <jats:italic>d</jats:italic> and whose maximum degree grows not much faster than <jats:italic>d</jats:italic> log <jats:italic>d</jats:italic> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548320000279_inline7.png" /><jats:tex-math>
${\gamma_\circ}(G) \sim {n}/{2}$
</jats:tex-math></jats:alternatives></jats:inline-formula> as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0963548320000279_inline8.png" /><jats:tex-math>
$d \rightarrow \infty$
</jats:tex-math></jats:alternatives></jats:inline-formula>. Therefore both the girth and regularity conditions are required for the main result.</jats:p>
[1]
Pawel Hitczenko,et al.
Beyond the method of bounded differences
,
1997,
Microsurveys in Discrete Probability.
[2]
C. McDiarmid.
Concentration
,
1862,
The Dental register.
[3]
N. Wormald.
Models of random regular graphs
,
2010
.
[4]
Alan M. Frieze,et al.
On the independence and chromatic numbers of random regular graphs
,
1992,
J. Comb. Theory, Ser. B.
[5]
P. Erdos-L Lovász.
Problems and Results on 3-chromatic Hypergraphs and Some Related Questions
,
2022
.
[6]
Noga Alon,et al.
Coloring Graphs with Sparse Neighborhoods
,
1999,
J. Comb. Theory B.
[7]
David Gamarnik,et al.
Randomized Greedy Algorithms for Independent Sets and Matchings in Regular Graphs: Exact Results and Finite Girth Corrections
,
2008,
Combinatorics, Probability and Computing.
[8]
Béla Bollobás,et al.
Random Graphs: Notation
,
2001
.
[9]
M. Habib.
Probabilistic methods for algorithmic discrete mathematics
,
1998
.
[10]
David Williams,et al.
Probability with Martingales
,
1991,
Cambridge mathematical textbooks.
[11]
Joel H. Spencer,et al.
Sharp concentration of the chromatic number on random graphsGn, p
,
1987,
Comb..
[12]
Nicholas C. Wormald,et al.
Large independent sets in regular graphs of large girth
,
2007,
J. Comb. Theory, Ser. B.
[13]
William Duckworth,et al.
On the Independent Domination Number of Random Regular Graphs
,
2006,
Combinatorics, Probability and Computing.
[14]
N. Wormald.
The differential equation method for random graph processes and greedy algorithms
,
1999
.
[15]
Alan M. Frieze,et al.
Random graphs
,
2006,
SODA '06.
[16]
Svante Janson,et al.
Random graphs
,
2000,
Wiley-Interscience series in discrete mathematics and optimization.
[17]
Noga Alon,et al.
The Probabilistic Method
,
2015,
Fundamentals of Ramsey Theory.
[18]
Fan Chung Graham,et al.
Coupling Online and Offline Analyses for Random Power Law Graphs
,
2004,
Internet Math..
[19]
James B. Shearer,et al.
A note on the independence number of triangle-free graphs
,
1983,
Discret. Math..
[20]
Michele Zito,et al.
Greedy Algorithms for Minimisation Problems in Random Regular Graphs
,
2001,
ESA.