A Multiresolution Method for the Simulation of Sedimentation-Consolidation Processes
暂无分享,去创建一个
[1] Corrado Mascia,et al. Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .
[2] Anthony Michel,et al. Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods , 2003, SIAM J. Numer. Anal..
[3] Mauricio Sepúlveda,et al. A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes , 2005, Math. Comput..
[4] Raimund Bürger,et al. Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..
[5] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[6] Mats Holmström,et al. Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..
[7] Barna L. Bihari,et al. Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..
[8] Barna L. Bihari,et al. Application of generalized wavelets: an adaptive multiresolution scheme , 1995 .
[9] Olivier Roussel,et al. A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .
[10] Rosa Donat,et al. Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..
[11] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[12] Centro internazionale matematico estivo. Session,et al. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .