A Multiresolution Method for the Simulation of Sedimentation-Consolidation Processes

A multiresolution method for a one-dimensional strongly degenerate parabolic equation modeling sedimentation-consolidation processes is introduced. The method is based on the switch between central interpolation or exact evaluation of the numerical flux combined with a thresholded wavelet transform applied to point values of the solution to control the switch. A numerical example is presented.

[1]  Corrado Mascia,et al.  Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .

[2]  Anthony Michel,et al.  Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods , 2003, SIAM J. Numer. Anal..

[3]  Mauricio Sepúlveda,et al.  A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes , 2005, Math. Comput..

[4]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[5]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[6]  Mats Holmström,et al.  Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..

[7]  Barna L. Bihari,et al.  Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..

[8]  Barna L. Bihari,et al.  Application of generalized wavelets: an adaptive multiresolution scheme , 1995 .

[9]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[10]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[11]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[12]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .