In situ diagnostics of the crystal-growth process through neutron imaging: application to scintillators

The unique possibilities enabled by neutron imaging for in situ remote diagnostics of microstructural characteristics during crystal growth are demonstrated, even when the materials and surrounding structures are opaque to other more conventional interrogation techniques. Neutron radiography is implemented to image remotely the uniformity of elemental distribution (e.g. dopant concentration) during crystal growth, the location of the liquid/solid interface and the presence of macroscopic crystal defects (e.g. cracks), all with a temporal resolution of 5–7 s.

[1]  W. Lamb Capture of Neutrons by Atoms in a Crystal , 1939 .

[2]  H. Jackson,et al.  RESONANT ABSORPTION OF NEUTRONS BY CRYSTALS , 1962 .

[3]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[4]  J. Mayers,et al.  Temperature measurement by neutron resonance radiography , 1989 .

[5]  J. Derby,et al.  Heat transfer in vertical Bridgman growth of oxides - Effects of conduction, convection, and internal radiation , 1992 .

[6]  R. Blankenbecler Structured targets and the Landau-Pomeranchuk-Migdal effect , 1997 .

[7]  Pieter Dorenbos,et al.  Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6 : Ce3+ crystals , 1999 .

[8]  Philip J. Withers,et al.  Time-of-flight neutron transmission diffraction , 2001 .

[9]  M. Klintenberg,et al.  The Quest for the Ideal Inorganic Scintillator , 2002 .

[10]  W. G. Marshall,et al.  Remote determination of sample temperature by neutron resonance spectroscopy. , 2005 .

[11]  Prodromos Daoutidis,et al.  The feedback control of the vertical Bridgman crystal growth process by crucible rotation: two case studies , 2005, Comput. Chem. Eng..

[12]  J P Quintana,et al.  Shock temperature measurement using neutron resonance spectroscopy. , 2005, Physical review letters.

[13]  N. Kardjilov,et al.  Wavelength tunable device for neutron radiography and tomography , 2006 .

[14]  Eberhard Lehmann,et al.  Energy-selective neutron transmission imaging at a pulsed source , 2007 .

[15]  Arnold Burger,et al.  Strontium and barium iodide high light yield scintillators , 2008 .

[16]  P. Böni,et al.  Energy-dependent neutron imaging with a double crystal monochromator at the ANTARES facility at FRM II , 2009 .

[17]  G. Bizarri,et al.  Eu2+-doped Ba2CsI5, a new high-performance scintillator , 2009 .

[18]  G. Bizarri,et al.  BaBrI:Eu2 + , a new bright scintillator , 2010 .

[19]  M. Zhuravleva,et al.  Crystal growth and characterization of CsSr1–xEux I3 high light yield scintillators , 2011 .

[20]  C. Grünzweig,et al.  The ICON beamline – A facility for cold neutron imaging at SINQ , 2011 .

[21]  J. Banhart,et al.  Neutron imaging in materials science , 2011 .

[22]  G. Gorini,et al.  Neutron resonance spectroscopy for the characterization of materials and objects , 2012 .

[23]  G. Bizarri,et al.  Crystal growth and characterization of alkali-earth halide scintillators , 2012 .

[24]  G. Bizarri,et al.  Structure and scintillation of Eu2+-activated BaBrCl and solid solutions in the BaCl2–BaBr2 system , 2013 .

[25]  Mark A.M. Bourke,et al.  Energy resolved neutron radiography at LANSCE pulsed neutron facility , 2013 .

[26]  M. Zhuravleva,et al.  Theoretical and experimental characterization of promising new scintillators: Eu2+ doped CsCaCl3 and CsCaI3 , 2013 .

[27]  Fujio Maekawa,et al.  Visibility Estimation for Neutron Resonance Absorption Radiography using a Pulsed Neutron Source , 2013 .

[28]  Mark A.M. Bourke,et al.  Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography , 2013 .

[29]  E. Lehmann,et al.  Neutron imaging options at the BOA beamline at Paul Scherrer Institut , 2014 .

[30]  Jason McPhate,et al.  Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source , 2014 .

[31]  Giuseppe Gorini,et al.  Neutron resonance transmission imaging for 3D elemental mapping at the ISIS spallation neutron source , 2015 .

[32]  A. Yoshikawa,et al.  Recent R&D Trends in Inorganic Single‐Crystal Scintillator Materials for Radiation Detection , 2015 .

[33]  H. Bilheux,et al.  Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere. , 2015, The Review of scientific instruments.

[34]  Anton S. Tremsin,et al.  Spatially resolved remote measurement of temperature by neutron resonance absorption , 2015 .

[35]  W. B. Feller,et al.  High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut , 2015 .

[36]  E. Bourret,et al.  Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu , 2016 .