GABAB Mediated Regulation of Sympathetic Preganglionic Neurons: Pre- and Postsynaptic Sites of Action

Modulatory influences on sympathetic nervous system activity are diverse and far reaching, acting at select points in the complex pathways controlling sympathetic outflow to enable subtle changes or more global effects. Changes in the degree of sympathetic neuromodulation can have serious consequences on homeostatic variables such as heart rate, blood pressure and gut motility. At the level of the spinal cord, the sympathetic preganglionic neurons (SPNs) can be modulated by activation of presynaptic GABAB heteroreceptors on glutamatergic terminals and by postsynaptic GABAB receptors. Here we show that a low concentration of the GABAB agonist baclofen (1 μM) attenuated GABAergic inhibitory postsynaptic potentials in SPNs elicited from stimulation of either the central autonomic area or descending fibers in the lateral funiculus. This low baclofen concentration also elicited three categories of postsynaptic response: a large hyperpolarization with a decrease in input resistance, a moderate hyperpolarization with no change in input resistance and no response. Using cesium-loaded, tetraethylammonium chloride containing electrodes (to block potassium conductance), baclofen elicited moderate hyperpolarizations with no change in input resistance in 50% of SPNs; the remainder were unaffected. These modest hyperpolarizations were reduced in Ca2+ free solution or cadmium. Hyperpolarizing responses were also observed in interneurons in the vicinity of SPNs. These studies provide the first evidence for GABAB autoreceptors involved in inhibitory GABAergic transmission onto SPNs and for postsynaptic GABAB receptors on interneurons. The data also indicate that there is heterogeneity in the postsynaptic responses of SPNs.

[1]  سامره کریمی,et al.  اثرات متقابل امواج الکترومغناطیس و تعدیل گیرنده GABA-B بر غلظت تستوسترون سرمی در موشهای صحرایی پرخاشگر , 2011 .

[2]  M. Frotscher,et al.  The GABAB1a Isoform Mediates Heterosynaptic Depression at Hippocampal Mossy Fiber Synapses , 2009, The Journal of Neuroscience.

[3]  J. Deuchars,et al.  Tonic GABAergic Inhibition of Sympathetic Preganglionic Neurons: A Novel Substrate for Sympathetic Control , 2008, The Journal of Neuroscience.

[4]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[5]  T. Oertner,et al.  Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants , 2006, Neuron.

[6]  M. Frotscher,et al.  Compartment-Dependent Colocalization of Kir3.2-Containing K+ Channels and GABAB Receptors in Hippocampal Pyramidal Cells , 2006, The Journal of Neuroscience.

[7]  N. Bowery GABAB receptor: a site of therapeutic benefit. , 2006, Current opinion in pharmacology.

[8]  R. Luján,et al.  Molecular and Cellular Diversity of Neuronal G-Protein-Gated Potassium Channels , 2005, The Journal of Neuroscience.

[9]  Min-Chi Ku,et al.  GABAB-receptor-mediated suppression of sympathetic outflow from the spinal cord of neonatal rats. , 2005, Journal of applied physiology.

[10]  J. Deuchars,et al.  GABAergic Neurons in the Central Region of the Spinal Cord: A Novel Substrate for Sympathetic Inhibition , 2005, The Journal of Neuroscience.

[11]  R. Shigemoto,et al.  Localization of the GABAB receptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat , 2004, The Journal of comparative neurology.

[12]  L. Renaud,et al.  Activation and integration of bilateral GABA‐mediated synaptic inputs in neonatal rat sympathetic preganglionic neurones in vitro , 2004, The Journal of physiology.

[13]  J. Deuchars,et al.  Input-Specific Modulation of Neurotransmitter Release in the Lateral Horn of the Spinal Cord via Adenosine Receptors , 2004, The Journal of Neuroscience.

[14]  E. Neher,et al.  Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse , 2003, Nature.

[15]  J. Deuchars,et al.  Adenosine A1 Receptors Reduce Release from Excitatory But Not Inhibitory Synaptic Inputs onto Lateral Horn Neurons , 2001, The Journal of Neuroscience.

[16]  B. Kim,et al.  Mediation of the cardiovascular response to spinal γ-aminobutyric acidB receptor stimulation by adenosine A1 receptors in anesthetized rats , 2000, Neuroscience Letters.

[17]  B. Gähwiler,et al.  Differential control of GABA release at synapses from distinct interneurons in rat hippocampus , 2000, The Journal of physiology.

[18]  N. Bowery,et al.  GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia , 2000, The European journal of neuroscience.

[19]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[20]  M. Nolan,et al.  Electrophysiological properties of electrical synapses between rat sympathetic preganglionic neurones in vitro , 1999, The Journal of physiology.

[21]  V. Meskenaite,et al.  GABAB‐receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization , 1999, The European journal of neuroscience.

[22]  N. Bowery,et al.  GABAB receptor isoforms GBR1a and GBR1b, appear to be associated with pre‐ and post‐synaptic elements respectively in rat and human cerebellum , 1999, British journal of pharmacology.

[23]  R. Shigemoto,et al.  GABAB-receptor subtypes assemble into functional heteromeric complexes , 1998, Nature.

[24]  B. Gähwiler,et al.  Either N- or P-type Calcium Channels Mediate GABA Release at Distinct Hippocampal Inhibitory Synapses , 1997, Neuron.

[25]  Jennifer Ong,et al.  GABAB Receptors , 1997 .

[26]  M. Nolan,et al.  Electrotonic coupling between rat sympathetic preganglionic neurones in vitro. , 1996, The Journal of physiology.

[27]  S. Enna,et al.  Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain , 1996, Brain Research.

[28]  S. Morrison,et al.  Medullary‐evoked EPSPs in neonatal rat sympathetic preganglionic neurones in vitro. , 1995, The Journal of physiology.

[29]  S. Glaum,et al.  GABAB receptors modulate a tetanus-induced sustained potentiation of monosynaptic inhibitory transmission in the rat nucleus tractus solitarii in vitro. , 1995, Journal of the autonomic nervous system.

[30]  N. Leresche,et al.  Modulation by different GABAB receptor types of voltage‐activated calcium currents in rat thalamocortical neurones. , 1995, The Journal of physiology.

[31]  J. Paysan,et al.  Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  K. Takayama,et al.  Distribution of glutamate- and GABA-immunoreactive neurons projecting to the cardioacceleratory center of the intermediolateral nucleus of the thoracic cord of SHR and WKY rats: a double-labeling study , 1994, Brain Research.

[33]  A. D. Smith,et al.  A monosynaptic pathway from an identified vasomotor centre in the medial prefrontal cortex to an autonomic area in the thoracic spinal cord , 1993, Neuroscience.

[34]  B. Bean,et al.  GABAB Receptor Inhibition of P-type Ca2+ Channels in Central Neurons , 1993, Neuron.

[35]  R. Nicoll,et al.  Local and diffuse synaptic actions of GABA in the hippocampus , 1993, Neuron.

[36]  K. Spyer,et al.  The actions of baclofen on neurones and synaptic transmission in the nucleus tractus solitarii of the rat in vitro. , 1992, The Journal of physiology.

[37]  JM Solis,et al.  Pharmacological characterization of GABAB-mediated responses in the CA1 region of the rat hippocampal slice , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  M. Raiteri,et al.  Functional evidence for multiple gamma-aminobutyric acidB receptor subtypes in the rat cerebral cortex. , 1992, The Journal of pharmacology and experimental therapeutics.

[39]  N. Dun,et al.  Presynaptic GABAB receptor activation attenuates synaptic transmission to rat sympathetic preganglionic neurons in vitro , 1992, Brain Research.

[40]  S. Logan,et al.  Spontaneous rhythmic activity in the intermediolateral cell nucleus of the neonate rat thoracolumbar spinal cord in vitro , 1990, Neuroscience.

[41]  L. Schramm,et al.  Baclofen inhibits sympathetic preganglionic neurons in an isolated spinal cord preparation , 1984, Neuroscience Letters.

[42]  M. Henning,et al.  Central cardiovascular and biochemical effects of baclofen in the conscious rat , 1980, The Journal of pharmacy and pharmacology.

[43]  S. Hochman,et al.  Heterogeneity of membrane properties in sympathetic preganglionic neurons of neonatal mice: evidence of four subpopulations in the intermediolateral nucleus. , 2010, Journal of neurophysiology.

[44]  B. Bettler,et al.  Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. , 1997, Nature.

[45]  K. Spyer,et al.  Stimulation within the rostral ventrolateral medulla can evoke monosynaptic GABAergic IPSPs in sympathetic preganglionic neurons in vitro. , 1997, Journal of neurophysiology.