Neural masses and fields in dynamic causal modeling

Dynamic causal modeling (DCM) provides a framework for the analysis of effective connectivity among neuronal subpopulations that subtend invasive (electrocorticograms and local field potentials) and non-invasive (electroencephalography and magnetoencephalography) electrophysiological responses. This paper reviews the suite of neuronal population models including neural masses, fields and conductance-based models that are used in DCM. These models are expressed in terms of sets of differential equations that allow one to model the synaptic underpinnings of connectivity. We describe early developments using neural mass models, where convolution-based dynamics are used to generate responses in laminar-specific populations of excitatory and inhibitory cells. We show that these models, though resting on only two simple transforms, can recapitulate the characteristics of both evoked and spectral responses observed empirically. Using an identical neuronal architecture, we show that a set of conductance based models—that consider the dynamics of specific ion-channels—present a richer space of responses; owing to non-linear interactions between conductances and membrane potentials. We propose that conductance-based models may be more appropriate when spectra present with multiple resonances. Finally, we outline a third class of models, where each neuronal subpopulation is treated as a field; in other words, as a manifold on the cortical surface. By explicitly accounting for the spatial propagation of cortical activity through partial differential equations (PDEs), we show that the topology of connectivity—through local lateral interactions among cortical layers—may be inferred, even in the absence of spatially resolved data. We also show that these models allow for a detailed analysis of structure–function relationships in the cortex. Our review highlights the relationship among these models and how the hypothesis asked of empirical data suggests an appropriate model class.

[1]  I. Winkler,et al.  Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. , 2005, Psychophysiology.

[2]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[3]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[4]  Raymond J. Dolan,et al.  Consistent spectral predictors for dynamic causal models of steady-state responses , 2011, NeuroImage.

[5]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[6]  Michael A. Buice,et al.  Dynamic Finite Size Effects in Spiking Neural Networks , 2013, PLoS Comput. Biol..

[7]  Karl J. Friston,et al.  Remote Effects of Hippocampal Sclerosis on Effective Connectivity during Working Memory Encoding: A Case of Connectional Diaschisis? , 2012, Cerebral cortex.

[8]  Peter A. Robinson,et al.  Stability of small-world networks of neural populations , 2009, Neurocomputing.

[9]  Karl J. Friston,et al.  EEG and MEG Data Analysis in SPM8 , 2011, Comput. Intell. Neurosci..

[10]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[11]  T. Rado,et al.  On Surface Area. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Karl J. Friston,et al.  Dynamic causal modelling of evoked potentials: A reproducibility study , 2007, NeuroImage.

[13]  D. Liley,et al.  Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Karl J. Friston,et al.  Anatomical connectivity and the resting state activity of large cortical networks , 2013, NeuroImage.

[16]  John Ashburner,et al.  SPM: A history , 2012, NeuroImage.

[17]  P Riley,et al.  Dynamical reconnection and stability constraints on cortical network architecture. , 2009, Physical review letters.

[18]  S Zeki,et al.  Parallelism and functional specialization in human visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[19]  David Pinto,et al.  Mathematical neuroscience: from neurons to circuits to systems , 2003, Journal of Physiology-Paris.

[20]  Andreas Daffertshofer,et al.  Generative Models of Cortical Oscillations: Neurobiological Implications of the Kuramoto Model , 2010, Front. Hum. Neurosci..

[21]  Frank Marten,et al.  Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: Application to epilepsy seizure evolution , 2012, NeuroImage.

[22]  Andreas Daffertshofer,et al.  Spatio-temporal patterns of encephalographic signals during polyrhythmic tapping , 2000 .

[23]  D. Durstewitz,et al.  The Dual-State Theory of Prefrontal Cortex Dopamine Function with Relevance to Catechol-O-Methyltransferase Genotypes and Schizophrenia , 2008, Biological Psychiatry.

[24]  P. Goldman-Rakic Regional and cellular fractionation of working memory. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  John R. Terry,et al.  Topographic Organization of Nonlinear Interdependence in Multichannel Human EEG , 2002, NeuroImage.

[26]  Andreas V. M. Herz,et al.  A Universal Model for Spike-Frequency Adaptation , 2003, Neural Computation.

[27]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[28]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[29]  Karl J. Friston,et al.  DCM for complex-valued data: Cross-spectra, coherence and phase-delays , 2012, NeuroImage.

[30]  Karl J. Friston,et al.  Population dynamics: Variance and the sigmoid activation function , 2008, NeuroImage.

[31]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[32]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[33]  P. Robinson,et al.  Prediction of electroencephalographic spectra from neurophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[35]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[36]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[37]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[38]  Karl J. Friston,et al.  Dynamic causal modelling of lateral interactions in the visual cortex , 2013, NeuroImage.

[39]  Karl J. Friston,et al.  a K.E. Stephan, a R.B. Reilly, , 2007 .

[40]  R. Jindra Mass action in the nervous system W. J. Freeman, Academic Press, New York (1975), 489 pp., (hard covers). $34.50 , 1976, Neuroscience.

[41]  H. Haken,et al.  A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics , 1997 .

[42]  Karl J. Friston,et al.  An In Vivo Assay of Synaptic Function Mediating Human Cognition , 2011, Current Biology.

[43]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[44]  Derek K. Jones,et al.  Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans , 2009, Proceedings of the National Academy of Sciences.

[45]  D. Schwarzkopf,et al.  The Frequency of Visually Induced Gamma-Band Oscillations Depends on the Size of Early Human Visual Cortex , 2012, The Journal of Neuroscience.

[46]  Karl J. Friston,et al.  Population dynamics under the Laplace assumption , 2009, NeuroImage.

[47]  John R. Terry,et al.  Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Karl J. Friston,et al.  Modeling ketamine effects on synaptic plasticity during the mismatch negativity. , 2013, Cerebral cortex.

[49]  F. H. Lopes da Silva,et al.  Interdependence of EEG signals: Linear vs. nonlinear Associations and the significance of time delays and phase shifts , 2005, Brain Topography.

[50]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[51]  G. Deco,et al.  Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors , 2012, The Journal of Neuroscience.

[52]  C. Gonzalez-Islas,et al.  Dopamine Enhances EPSCs in Layer II–III Pyramidal Neurons in Rat Prefrontal Cortex , 2003, The Journal of Neuroscience.

[53]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[54]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[55]  N. Gorelova,et al.  Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. , 2000, Journal of neurophysiology.

[56]  Karl J. Friston,et al.  Behavioral / Systems / Cognitive Connectivity Changes Underlying Spectral EEG Changes during Propofol-Induced Loss of Consciousness , 2012 .

[57]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[58]  G. Box Science and Statistics , 1976 .

[59]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[60]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[61]  Karl J. Friston,et al.  Dynamic causal modeling with neural fields , 2012, NeuroImage.

[62]  Karl J. Friston,et al.  Neural fields, spectral responses and lateral connections , 2011, NeuroImage.

[63]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[64]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[65]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[66]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[67]  James J. Wright,et al.  Dynamics of the brain at global and microscopic scales: Neural networks and the EEG , 1996, Behavioral and Brain Sciences.

[68]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[69]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[70]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[71]  P. Robinson,et al.  Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[73]  Xiao-Jing Wang,et al.  Erratum to: Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition , 2014, Journal of Computational Neuroscience.

[74]  Krish D. Singh,et al.  Orientation Discrimination Performance Is Predicted by GABA Concentration and Gamma Oscillation Frequency in Human Primary Visual Cortex , 2009, The Journal of Neuroscience.

[75]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[76]  Karl J. Friston,et al.  Evoked brain responses are generated by feedback loops , 2007, Proceedings of the National Academy of Sciences.

[77]  M. Breakspear Nonlinear phase desynchronization in human electroencephalographic data , 2002, Human brain mapping.

[78]  A. Hodgkin,et al.  Propagation of electrical signals along giant nerve fibres , 1952, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[79]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[80]  Karl J. Friston,et al.  A dynamic causal model study of neuronal population dynamics , 2010, NeuroImage.

[81]  P. Robinson,et al.  Mechanisms of cortical electrical activity and emergence of gamma rhythm. , 2000, Journal of theoretical biology.

[82]  D. Samuel Schwarzkopf,et al.  The surface area of human V1 predicts the subjective experience of object size , 2010, Nature Neuroscience.

[83]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[84]  Stephen Coombes,et al.  Large-scale neural dynamics: Simple and complex , 2010, NeuroImage.

[85]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[86]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[87]  Olivier D. Faugeras,et al.  Bifurcation Analysis of Jansen's Neural Mass Model , 2006, Neural Computation.

[88]  Karl J. Friston,et al.  Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State , 2011, Science.

[89]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[90]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[91]  Agnessa Babloyantz,et al.  Pacemaker-Induced Coherence in Cortical Networks , 1991, Neural Computation.

[92]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[93]  CE Jahr,et al.  A quantitative description of NMDA receptor-channel kinetic behavior , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.