Towards a Coherent Theory of Physics and Mathematics: The Theory–Experiment Connection

The problem of how mathematics and physics are related at a foundational level is of interest. The approach taken here is to work towards a coherent theory of physics and mathematics together by examining the theory experiment connection. The role of an implied theory hierarchy and use of computers in comparing theory and experiment is described. The main idea of the paper is to tighten the theory experiment connection by bringing physical theories, as mathematical structures over C, the complex numbers, closer to what is actually done in experimental measurements and computations. The method replaces C by Cn which is the set of pairs, Rn,In, of n figure rational numbers in some basis. The properties of these numbers are based on those of numerical measurement outcomes for continuous variables. A model of space and time based on Rn is discussed. The model is scale invariant with regions of constant step size interrupted by exponential jumps. A method of taking the limit n→∞ to obtain locally flat continuum-based space and time is outlined. Also Rn based space is invariant under scale transformations. These correspond to expansion and contraction of space relative to a flat background. The location of the origin, which is a space and time singularity, does not change under these transformations. Some properties of quantum mechanics, based on Cn and on Rn space are briefly investigated.

[1]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[2]  C. Hogan Why the Universe is Just So , 1999, astro-ph/9909295.

[3]  Paul Benioff Language Is Physical , 2002, Quantum Inf. Process..

[4]  A. Heyting,et al.  Intuitionism: An introduction , 1956 .

[5]  Asher Peres,et al.  IS QUANTUM THEORY UNIVERSALLY VALID , 1982 .

[6]  S. Shapiro Philosophy of mathematics : structure and ontology , 1997 .

[7]  D. Pines,et al.  The theory of everything. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[9]  D. Meyer Finite Precision Measurement Nullifies the Kochen-Specker Theorem , 1999, quant-ph/9905080.

[10]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .

[11]  Y. Ozhigov Fast quantum verification for the formulas of predicate calculus , 1998, quant-ph/9809015.

[12]  J. McMaster,et al.  The Elegant Universe , 1999 .

[13]  Paul Benioff QUANTUM ROBOTS AND ENVIRONMENTS , 1998 .

[14]  K. Svozil Set theory and physics , 1995 .

[15]  Percy Williams Bridgman,et al.  The nature of physical theory , 1936 .

[16]  J. Król Exotic Smoothness and Noncommutative Spaces. The Model-Theoretical Approach , 2004 .

[17]  Satoko Titani,et al.  Quantum Set Theory , 2003 .

[18]  Philip J. Davis,et al.  The Mathematical Experience , 1982 .

[19]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[20]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[21]  J. Wheeler Assessment of Everett's 'Relative State' Formulation of Quantum Theory , 1957 .

[22]  M. Kline Mathematics: The Loss of Certainty , 1982 .

[23]  D. Finkelstein Higher-order quantum logics , 1992 .

[24]  A. F. Foundations of Physics , 1936, Nature.

[25]  D. Deutsch The fabric of reality , 1997, The Art of Political Storytelling.

[26]  E. Squires,et al.  Conscious Mind in the Physical World , 1990 .

[27]  Gaisi Takeuti,et al.  Quantum Set Theory , 1981 .

[28]  Finite precision measurement nullifies Euclid's postulates , 2003, quant-ph/0310035.

[29]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[30]  V. Wiktor Marek,et al.  Foundations of Mathematics in the Twentieth Century , 2001, Am. Math. Mon..

[31]  W. Zurek Environment-induced superselection rules , 1982 .

[32]  A. Odlyzko Primes , Quantum Chaos , and Computers , 1990 .

[33]  M. Beeson Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .

[34]  R. Landauer Information is physical , 1991 .

[35]  H. Stapp Mind, matter, and quantum mechanics , 1982 .

[36]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[37]  Jouko A. Väänänen,et al.  Second-Order Logic and Foundations of Mathematics , 2001, Bulletin of Symbolic Logic.

[38]  Vladimir A. Uspensky,et al.  Gödel's Incompleteness Theorem , 1989, Theor. Comput. Sci..

[39]  W. Greiner Mathematical Foundations of Quantum Mechanics I , 1993 .

[40]  L. Foschini On the logic of quantum physics and the concept of the time , 1998, quant-ph/9804040.

[41]  A. Peres The physicist's role in physical laws , 1980 .

[42]  Paul Benioff Towards a Coherent Theory of Physics and Mathematics , 2002 .

[43]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[44]  R. Crandall On the quantum zeta function , 1996 .

[45]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[46]  J. Król Set Theoretical Forcing in Quantum Mechanics and AdS/CFT Correspondence , 2003, quant-ph/0303089.

[47]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[48]  David Finkelstein Quantum Sets, Assemblies and Plexi , 1981 .

[49]  Max Tegmark Is “the Theory of Everything” Merely the Ultimate Ensemble Theory?☆ , 1997, gr-qc/9704009.

[50]  Asher Peres,et al.  Quantum Theory Needs No ‘Interpretation’ , 2000 .

[51]  Steven Weinberg,et al.  Dreams of a Final Theory , 1993 .

[52]  Gregory J. Chaitin,et al.  Information-Theoretic Incompleteness , 1992, World Scientific Series in Computer Science.

[53]  P. Davies,et al.  Why is the Physical World So Comprehensible ? , 2006 .

[54]  Henry P. Stapp,et al.  Mind, matter, and quantum mechanics , 1982 .

[55]  E. Wigner Remarks on the Mind-Body Question , 1995 .

[56]  Karl-Georg Schlesinger,et al.  Toward quantum mathematics. I. From quantum set theory to universal quantum mechanics , 1999 .

[57]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[58]  Paul M. B. Vitányi,et al.  Three approaches to the quantitative definition of information in an individual pure quantum state , 1999, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[59]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .

[60]  Christof Zalka Efficient Simulation of Quantum Systems by Quantum Computers , 1996, quant-ph/9603026.

[61]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[62]  Raymond M. Smullyan,et al.  Godel's Incompleteness Theorems , 1992 .

[63]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[64]  H. L. Armstrong,et al.  On the Nature of a Physical Theory , 1966 .

[65]  Douglas S. Bridges,et al.  Constructive Mathematics and Quantum Physics , 2000 .