Explorer Projected sensitivity of the LUX-ZEPLIN experiment to the 0 decay of 136Xe

The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double beta decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to 136 Xe neutrinoless double beta decay, taking advantage of the significant ( > 600 kg) 136 Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of 136 Xe is projected to be 1.06 × 10 26 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with 136 Xe at 1.06 × 10 27 years.

J. J. Wang | I. Stancu | D. Carlsmith | M. Schubnell | W. Wang | S. Burdin | E. Korolkova | B. L. Paredes | L. Kreczko | J. Busenitz | D. Khaitan | F. Wolfs | W. Lorenzon | B. Krikler | A. Vaitkus | C. Chan | D. Mckinsey | H. Nelson | R. Taylor | A. Vacheret | T. Shutt | K. Lesko | P. Zarzhitsky | A. Baxter | A. Bernstein | J. Reichenbacher | D. Akerib | K. Kazkaz | J. Dobson | R. Rosero | V. Kudryavtsev | M. Szydagis | D. Tiedt | H. Araújo | X. Bai | J. Balajthy | E. Bernard | M. Carmona-Benitez | E. Druszkiewicz | S. Fiorucci | R. Gaitskell | C. Ghag | S. Hertel | M. Horn | D. Huang | A. Lindote | M. Lopes | R. Mannino | J. Morad | C. Nehrkorn | F. Neves | E. K. Pease | C. Silva | V. Solovov | P. Sorensen | K. O'Sullivan | A. Kaboth | C. Akerlof | V. Bugaev | D. Santone | H. Flaecher | S. Kravitz | D. Leonard | A. Naylor | L. Manenti | K. Stifter | A. Manalaysay | M. Monzani | S. Alsum | M. Arthurs | S. Balashov | T. Biesiadzinski | K. Boast | B. Boxer | J. Buckley | C. Carels | A. Cole | A. Cottle | J. Cutter | C. Dahl | T. Edberg | A. Fan | T. Fruth | J. Genovesi | M. Gilchriese | S. Haselschwardt | J. Hor | C. Ignarra | W. Ji | K. Kamdin | A. Khazov | C. D. Kocher | H. Kraus | J. Lee | C. Levy | J. Li | J. Liao | F. Liao | J. Lin | R. Linehan | W. Lippincott | X. Liu | P. Majewski | E. Miller | E. Morrison | B. Mount | A. Murphy | J. Nikoleyczik | I. Olcina | K. Oliver-Mallory | K. Palladino | K. Pushkin | C. Rhyne | R. Schnee | S. Shaw | J. Silk | C. Silva | M. Solmaz | W. Taylor | P. Terman | M. Timalsina | L. Tvrznikova | U. Utku | T. J. Whitis | D. Woodward | P. Brás | M. F. Marzioni | S. Pal | A. Monte | X. Xiang | B. Penning | N. Chott | D. Seymour | J. Mclaughlin | T. Anderson | N. Angelides | J. Armstrong | J. Bang | A. Biekert | R. Cabrita | L. D. Viveiros | S. R. Eriksen | E. Fraser | E. Gibson | S. Gokhale | M. D. Grinten | O. Jahangir | J. Johnson | A. Kamaha | I. Khurana | L. Korley | E. Leason | N. Marangou | E. Mizrachi | D. Naim | C. Nedlik | J. Palmer | N. Parveen | G. Pereira | Q. Riffard | G. Rischbieter | A. Sazzad | R. Smith | A. Stevens | N. Swanson | D. Tronstad | W. Turner | A. Alqahtani | A. Harrison | J. Kraś | R. Liu | C. Loniewski | A. Nilima | G. Rutherford | M. Tan | S. Luitz | T. Sumner | J. Xu | Y. Meng | J. Bensinger | A. Bhatti | H. Birch | M. Cascella | C. Hall | J. Lyle | P. Rossiter | A. Tomás | J. R. Watson | R. Webb | R. G. White | M. Yeh | M. Tripathi | J. Watson | J. Johnson | J. E. Armstrong | S. Eriksen

[1]  J. J. Wang,et al.  Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment , 2020, Astroparticle Physics.

[2]  P. Cushman,et al.  Reply to “Comment on ‘Observation of annual modulation induced by γ rays from (α,γ) reactions at the Soudan Underground Laboratory' ” , 2020, Physical Review C.

[3]  V. C. Antochi,et al.  Energy resolution and linearity in the keV to MeV range measured in XENON1T , 2020, 2003.03825.

[4]  Y. H. Lin,et al.  Measurement of the scintillation and ionization response of liquid xenon at MeV energies in the EXO-200 experiment , 2019, 1908.04128.

[5]  J. P. Rodrigues,et al.  Measurement of the gamma ray background in the Davis cavern at the Sanford Underground Research Facility , 2020 .

[6]  J. P. Rodrigues,et al.  Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment , 2018, Physical Review D.

[7]  A. K. Soma,et al.  Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.

[8]  A. Poon,et al.  Neutrinoless Double-Beta Decay: Status and Prospects , 2019, Annual Review of Nuclear and Particle Science.

[9]  P. Pirinen,et al.  Charged-current neutrino-nucleus scattering off Xe isotopes , 2019, Physical Review C.

[10]  R. Webb,et al.  Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment , 2017, Physical Review D.

[11]  R. Webb,et al.  Position reconstruction in LUX , 2017, 1710.02752.

[12]  H. Ejiri,et al.  Solar neutrinos as background to neutrinoless double-beta decay experiments , 2017, 1708.00927.

[13]  P. Cushman,et al.  Observation of annual modulation induced by γ rays from (α,γ) reactions at the Soudan Underground Laboratory , 2017, 1706.00100.

[14]  K. J. Thomas,et al.  LUX-ZEPLIN (LZ) Technical Design Report , 2017, 1703.09144.

[15]  K. J. Thomas,et al.  Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches , 2017, 1702.02646.

[16]  R. Webb,et al.  Signal yields, energy resolution, and recombination fluctuations in liquid xenon , 2016, 1610.02076.

[17]  K. Vetter,et al.  Muon flux measurements at the davis campus of the sanford underground research facility with the majorana demonstrator veto system , 2016, 1602.07742.

[18]  A. Goldschmidt,et al.  Deep Underground Science and Engineering Laboratory - Preliminary Design Report , 2011, 1108.0959.

[19]  X. Mougeot BetaShape: A new code for improved analytical calculations of beta spectra , 2017 .

[20]  Stephan Aune,et al.  PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers , 2016, 1610.08883.

[21]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[22]  R. Lang,et al.  A 220Rn source for the calibration of low-background experiments , 2016, 1602.01138.

[23]  R. Webb,et al.  Tritium calibration of the LUX dark matter experiment , 2015, 1512.03133.

[24]  K. Kratz,et al.  Low energy neutron background in deep underground laboratories , 2015, 1509.00770.

[25]  P. Fierlinger,et al.  Cosmogenic backgrounds to 0νββ in EXO-200 , 2015, 1512.06835.

[26]  L. M. Moutinho,et al.  Sensitivity of NEXT-100 to neutrinoless double beta decay , 2015, 1511.09246.

[27]  M. Tripathi,et al.  Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector , 2014, 1403.1299.

[28]  K. Lesko The Sanford Underground Research Facility at Homestake (SURF) , 2015 .

[29]  M. Auger,et al.  Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment , 2014, 1406.2374.

[30]  M. Auger,et al.  Improved measurement of the 2νββ half-life of 136 Xe with the EXO-200 detector , 2014 .

[31]  L. Baudis,et al.  Neutrino physics with multi-ton scale liquid xenon detectors , 2013, 1309.7024.

[32]  C. Faham Prototype, Surface Commissioning and Photomultiplier Tube Characterization for the Large Underground Xenon (LUX) Direct Dark Matter Search Experiment , 2014 .

[33]  F. Iachello,et al.  57 22 v 1 [ nu clt h ] 2 5 S ep 2 01 2 Phase space factors for double-β decay , 2022 .

[34]  R. Saakyan Two-Neutrino Double-Beta Decay , 2013 .

[35]  T. R. Rodríguez,et al.  Shape and pairing fluctuation effects on neutrinoless double beta decay nuclear matrix elements. , 2013, Physical review letters.

[36]  M. Mustonen,et al.  Large-scale calculations of the double- β decay of 76 Ge , 130 Te , 136 Xe , and 150 Nd in the deformed self-consistent Skyrme quasiparticle random-phase approximation , 2013, 1301.6997.

[37]  R. Webb,et al.  An Ultra-Low Background PMT for Liquid Xenon Detectors , 2012, 1205.2272.

[38]  M Szydagis,et al.  Enhancement of NEST capabilities for simulating low-energy recoils in liquid xenon , 2013 .

[39]  K. Lesko,et al.  The Sanford Underground Research Facility at Homestake , 2012, The European Physical Journal Plus.

[40]  H. Ara'ujo,et al.  Liquid noble gas detectors for low energy particle physics , 2012, 1207.2292.

[41]  R. Webb,et al.  LUXSim: A Component-Centric Approach to Low-Background Simulations , 2011, 1111.2074.

[42]  D. R. Artusa,et al.  Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay , 2013 .

[43]  M. Tripathi,et al.  NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon , 2011, 1106.1613.

[44]  F. Gray,et al.  Cosmic ray muon flux at the Sanford Underground Laboratory at Homestake , 2010, 1007.1921.

[45]  V. Kudryavtsev,et al.  Radioactive background in a cryogenic dark matter experiment , 2010 .

[46]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[47]  F. Gray,et al.  Early results on radioactive background characterization for Sanford Laboratory and DUSEL experiments , 2009, 0912.0211.

[48]  D J Colling,et al.  GridPP: the UK grid for particle physics , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  D. Mckinsey,et al.  Preparation of Neutron-activated Xenon for Liquid Xenon Detector Calibration , 2007, 0708.1976.

[50]  E. G. Myers,et al.  Mass and double-beta-decay Q value of 136Xe. , 2007, Physical review letters.

[51]  G. Gerbier,et al.  Low energy neutron propagation in MCNPX and GEANT4 , 2006, hep-ex/0601030.

[52]  S. Basu,et al.  New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes , 2004, astro-ph/0412440.

[53]  Antony J. Wilson,et al.  GridPP: development of the UK computing Grid for particle physics , 2005 .

[54]  E. Conti,et al.  Correlated fluctuations between luminescence and ionization in liquid xenon , 2003, hep-ex/0303008.

[55]  O. Ponkratenko,et al.  Event generator DECAY4 for simulating double-beta processes and decays of radioactive nuclei , 2000, nucl-ex/0104018.

[56]  A. Rappoldi,et al.  Detection of energy deposition down to the keV region using liquid xenon scintillation , 1993, Defense, Security, and Sensing.

[57]  C. K. Lee,et al.  Multiple muons in the Homestake underground detector , 1983 .

[58]  B. Dolgoshein,et al.  New Method of Registration of Ionizing-particle Tracks in Condensed Matter , 1970 .

[59]  R. L. Platzman,et al.  Total ionization in gases by high-energy particles: An appraisal of our understanding☆ , 1961 .

[60]  Ettore Majorana Teoria simmetrica dell’elettrone e del positrone , 1937 .