Explorer Projected sensitivity of the LUX-ZEPLIN experiment to the 0 decay of 136Xe
暂无分享,去创建一个
J. J. Wang | I. Stancu | D. Carlsmith | M. Schubnell | W. Wang | S. Burdin | E. Korolkova | B. L. Paredes | L. Kreczko | J. Busenitz | D. Khaitan | F. Wolfs | W. Lorenzon | B. Krikler | A. Vaitkus | C. Chan | D. Mckinsey | H. Nelson | R. Taylor | A. Vacheret | T. Shutt | K. Lesko | P. Zarzhitsky | A. Baxter | A. Bernstein | J. Reichenbacher | D. Akerib | K. Kazkaz | J. Dobson | R. Rosero | V. Kudryavtsev | M. Szydagis | D. Tiedt | H. Araújo | X. Bai | J. Balajthy | E. Bernard | M. Carmona-Benitez | E. Druszkiewicz | S. Fiorucci | R. Gaitskell | C. Ghag | S. Hertel | M. Horn | D. Huang | A. Lindote | M. Lopes | R. Mannino | J. Morad | C. Nehrkorn | F. Neves | E. K. Pease | C. Silva | V. Solovov | P. Sorensen | K. O'Sullivan | A. Kaboth | C. Akerlof | V. Bugaev | D. Santone | H. Flaecher | S. Kravitz | D. Leonard | A. Naylor | L. Manenti | K. Stifter | A. Manalaysay | M. Monzani | S. Alsum | M. Arthurs | S. Balashov | T. Biesiadzinski | K. Boast | B. Boxer | J. Buckley | C. Carels | A. Cole | A. Cottle | J. Cutter | C. Dahl | T. Edberg | A. Fan | T. Fruth | J. Genovesi | M. Gilchriese | S. Haselschwardt | J. Hor | C. Ignarra | W. Ji | K. Kamdin | A. Khazov | C. D. Kocher | H. Kraus | J. Lee | C. Levy | J. Li | J. Liao | F. Liao | J. Lin | R. Linehan | W. Lippincott | X. Liu | P. Majewski | E. Miller | E. Morrison | B. Mount | A. Murphy | J. Nikoleyczik | I. Olcina | K. Oliver-Mallory | K. Palladino | K. Pushkin | C. Rhyne | R. Schnee | S. Shaw | J. Silk | C. Silva | M. Solmaz | W. Taylor | P. Terman | M. Timalsina | L. Tvrznikova | U. Utku | T. J. Whitis | D. Woodward | P. Brás | M. F. Marzioni | S. Pal | A. Monte | X. Xiang | B. Penning | N. Chott | D. Seymour | J. Mclaughlin | T. Anderson | N. Angelides | J. Armstrong | J. Bang | A. Biekert | R. Cabrita | L. D. Viveiros | S. R. Eriksen | E. Fraser | E. Gibson | S. Gokhale | M. D. Grinten | O. Jahangir | J. Johnson | A. Kamaha | I. Khurana | L. Korley | E. Leason | N. Marangou | E. Mizrachi | D. Naim | C. Nedlik | J. Palmer | N. Parveen | G. Pereira | Q. Riffard | G. Rischbieter | A. Sazzad | R. Smith | A. Stevens | N. Swanson | D. Tronstad | W. Turner | A. Alqahtani | A. Harrison | J. Kraś | R. Liu | C. Loniewski | A. Nilima | G. Rutherford | M. Tan | S. Luitz | T. Sumner | J. Xu | Y. Meng | J. Bensinger | A. Bhatti | H. Birch | M. Cascella | C. Hall | J. Lyle | P. Rossiter | A. Tomás | J. R. Watson | R. Webb | R. G. White | M. Yeh | M. Tripathi | J. Watson | J. Johnson | J. E. Armstrong | S. Eriksen
[1] J. J. Wang,et al. Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment , 2020, Astroparticle Physics.
[2] P. Cushman,et al. Reply to “Comment on ‘Observation of annual modulation induced by γ rays from (α,γ) reactions at the Soudan Underground Laboratory' ” , 2020, Physical Review C.
[3] V. C. Antochi,et al. Energy resolution and linearity in the keV to MeV range measured in XENON1T , 2020, 2003.03825.
[4] Y. H. Lin,et al. Measurement of the scintillation and ionization response of liquid xenon at MeV energies in the EXO-200 experiment , 2019, 1908.04128.
[5] J. P. Rodrigues,et al. Measurement of the gamma ray background in the Davis cavern at the Sanford Underground Research Facility , 2020 .
[6] J. P. Rodrigues,et al. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment , 2018, Physical Review D.
[7] A. K. Soma,et al. Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.
[8] A. Poon,et al. Neutrinoless Double-Beta Decay: Status and Prospects , 2019, Annual Review of Nuclear and Particle Science.
[9] P. Pirinen,et al. Charged-current neutrino-nucleus scattering off Xe isotopes , 2019, Physical Review C.
[10] R. Webb,et al. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment , 2017, Physical Review D.
[11] R. Webb,et al. Position reconstruction in LUX , 2017, 1710.02752.
[12] H. Ejiri,et al. Solar neutrinos as background to neutrinoless double-beta decay experiments , 2017, 1708.00927.
[13] P. Cushman,et al. Observation of annual modulation induced by γ rays from (α,γ) reactions at the Soudan Underground Laboratory , 2017, 1706.00100.
[14] K. J. Thomas,et al. LUX-ZEPLIN (LZ) Technical Design Report , 2017, 1703.09144.
[15] K. J. Thomas,et al. Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches , 2017, 1702.02646.
[16] R. Webb,et al. Signal yields, energy resolution, and recombination fluctuations in liquid xenon , 2016, 1610.02076.
[17] K. Vetter,et al. Muon flux measurements at the davis campus of the sanford underground research facility with the majorana demonstrator veto system , 2016, 1602.07742.
[18] A. Goldschmidt,et al. Deep Underground Science and Engineering Laboratory - Preliminary Design Report , 2011, 1108.0959.
[19] X. Mougeot. BetaShape: A new code for improved analytical calculations of beta spectra , 2017 .
[20] Stephan Aune,et al. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers , 2016, 1610.08883.
[21] M. Decowski,et al. Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.
[22] R. Lang,et al. A 220Rn source for the calibration of low-background experiments , 2016, 1602.01138.
[23] R. Webb,et al. Tritium calibration of the LUX dark matter experiment , 2015, 1512.03133.
[24] K. Kratz,et al. Low energy neutron background in deep underground laboratories , 2015, 1509.00770.
[25] P. Fierlinger,et al. Cosmogenic backgrounds to 0νββ in EXO-200 , 2015, 1512.06835.
[26] L. M. Moutinho,et al. Sensitivity of NEXT-100 to neutrinoless double beta decay , 2015, 1511.09246.
[27] M. Tripathi,et al. Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector , 2014, 1403.1299.
[28] K. Lesko. The Sanford Underground Research Facility at Homestake (SURF) , 2015 .
[29] M. Auger,et al. Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment , 2014, 1406.2374.
[30] M. Auger,et al. Improved measurement of the 2νββ half-life of 136 Xe with the EXO-200 detector , 2014 .
[31] L. Baudis,et al. Neutrino physics with multi-ton scale liquid xenon detectors , 2013, 1309.7024.
[32] C. Faham. Prototype, Surface Commissioning and Photomultiplier Tube Characterization for the Large Underground Xenon (LUX) Direct Dark Matter Search Experiment , 2014 .
[33] F. Iachello,et al. 57 22 v 1 [ nu clt h ] 2 5 S ep 2 01 2 Phase space factors for double-β decay , 2022 .
[34] R. Saakyan. Two-Neutrino Double-Beta Decay , 2013 .
[35] T. R. Rodríguez,et al. Shape and pairing fluctuation effects on neutrinoless double beta decay nuclear matrix elements. , 2013, Physical review letters.
[36] M. Mustonen,et al. Large-scale calculations of the double- β decay of 76 Ge , 130 Te , 136 Xe , and 150 Nd in the deformed self-consistent Skyrme quasiparticle random-phase approximation , 2013, 1301.6997.
[37] R. Webb,et al. An Ultra-Low Background PMT for Liquid Xenon Detectors , 2012, 1205.2272.
[38] M Szydagis,et al. Enhancement of NEST capabilities for simulating low-energy recoils in liquid xenon , 2013 .
[39] K. Lesko,et al. The Sanford Underground Research Facility at Homestake , 2012, The European Physical Journal Plus.
[40] H. Ara'ujo,et al. Liquid noble gas detectors for low energy particle physics , 2012, 1207.2292.
[41] R. Webb,et al. LUXSim: A Component-Centric Approach to Low-Background Simulations , 2011, 1111.2074.
[42] D. R. Artusa,et al. Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay , 2013 .
[43] M. Tripathi,et al. NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon , 2011, 1106.1613.
[44] F. Gray,et al. Cosmic ray muon flux at the Sanford Underground Laboratory at Homestake , 2010, 1007.1921.
[45] V. Kudryavtsev,et al. Radioactive background in a cryogenic dark matter experiment , 2010 .
[46] K. Cranmer,et al. Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.
[47] F. Gray,et al. Early results on radioactive background characterization for Sanford Laboratory and DUSEL experiments , 2009, 0912.0211.
[48] D J Colling,et al. GridPP: the UK grid for particle physics , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[49] D. Mckinsey,et al. Preparation of Neutron-activated Xenon for Liquid Xenon Detector Calibration , 2007, 0708.1976.
[50] E. G. Myers,et al. Mass and double-beta-decay Q value of 136Xe. , 2007, Physical review letters.
[51] G. Gerbier,et al. Low energy neutron propagation in MCNPX and GEANT4 , 2006, hep-ex/0601030.
[52] S. Basu,et al. New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes , 2004, astro-ph/0412440.
[53] Antony J. Wilson,et al. GridPP: development of the UK computing Grid for particle physics , 2005 .
[54] E. Conti,et al. Correlated fluctuations between luminescence and ionization in liquid xenon , 2003, hep-ex/0303008.
[55] O. Ponkratenko,et al. Event generator DECAY4 for simulating double-beta processes and decays of radioactive nuclei , 2000, nucl-ex/0104018.
[56] A. Rappoldi,et al. Detection of energy deposition down to the keV region using liquid xenon scintillation , 1993, Defense, Security, and Sensing.
[57] C. K. Lee,et al. Multiple muons in the Homestake underground detector , 1983 .
[58] B. Dolgoshein,et al. New Method of Registration of Ionizing-particle Tracks in Condensed Matter , 1970 .
[59] R. L. Platzman,et al. Total ionization in gases by high-energy particles: An appraisal of our understanding☆ , 1961 .
[60] Ettore Majorana. Teoria simmetrica dell’elettrone e del positrone , 1937 .