Quantile regression estimation of partially linear additive models
暂无分享,去创建一个
[1] Rodney C. Wolff,et al. Methods for estimating a conditional distribution function , 1999 .
[2] Gary Chamberlain,et al. Efficiency Bounds for Semiparametric Regression , 1992 .
[3] K. Doksum,et al. On spline estimators and prediction intervals in nonparametric regression , 2000 .
[4] Oliver Linton,et al. Testing additivity in generalized nonparametric regression models with estimated parameters , 2001 .
[5] Lijian Yang,et al. Spline-backfitted kernel smoothing of partially linear additive model , 2011 .
[6] H. Müller,et al. Local Polynomial Modeling and Its Applications , 1998 .
[7] Joel L. Horowitz,et al. Nonparametric Estimation of an Additive Quantile Regression Model , 2004 .
[8] Xingdong Feng,et al. Wild bootstrap for quantile regression. , 2011, Biometrika.
[9] Moshe Buchinsky. Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study , 1995 .
[10] K. Carriere,et al. Assessing additivity in nonparametric models —A kernel‐based method , 2011 .
[11] Dawit Zerom,et al. On Additive Conditional Quantiles With High-Dimensional Covariates , 2003 .
[12] E. Mammen,et al. Backfitting and smooth backfitting for additive quantile models , 2010, 1011.2592.
[13] Qi Li,et al. EFFICIENT ESTIMATION OF ADDITIVE PARTIALLY LINEAR MODELS , 2000 .
[14] Tang Qingguo,et al. M-estimation and B-spline approximation for varying coefficient models with longitudinal data , 2008 .
[15] Kengo Kato,et al. Weighted Nadaraya-Watson estimation of conditional expected shortfall , 2012 .
[16] J. Powell,et al. ESTIMATION OF MONOTONIC REGRESSION MODELS UNDER QUANTILE RESTRICTIONS , 1988 .
[17] Marco Costanigro,et al. Estimating class‐specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine markets , 2009 .
[18] Holger Dette,et al. Testing additivity by kernel-based methods - what is a reasonable test? , 2001 .
[19] W. Newey,et al. Convergence rates and asymptotic normality for series estimators , 1997 .
[20] Q. Shao,et al. On Parameters of Increasing Dimensions , 2000 .
[21] S. Lee. Endogeneity in Quantile Regression Models: A Control Function Approach , 2004 .
[22] R. Koenker. Quantile Regression: Name Index , 2005 .
[23] M. C. Jones,et al. Local Linear Quantile Regression , 1998 .
[24] Jianhua Z. Huang. Local asymptotics for polynomial spline regression , 2003 .
[25] Qi Li,et al. Efficient Estimation of Additive Partially Linear Models , 2000 .
[26] Liangjun Su,et al. Sieve Instrumental Variable Quantile Regression Estimation of Functional Coefficient Models , 2015 .
[27] J. Horowitz. Semiparametric and Nonparametric Methods in Econometrics , 2007 .
[28] Joel L. Horowitz,et al. Nonparametric estimation of an additive model with a link function , 2002, math/0508595.
[29] Zudi Lu,et al. Local Linear Additive Quantile Regression , 2004 .
[30] F. Wright,et al. CONVERGENCE AND PREDICTION OF PRINCIPAL COMPONENT SCORES IN HIGH-DIMENSIONAL SETTINGS. , 2012, Annals of statistics.
[31] 本田 純久. Longitudinal Data , 2003, Encyclopedia of Wireless Networks.
[32] Zongwu Cai,et al. REGRESSION QUANTILES FOR TIME SERIES , 2002, Econometric Theory.