Quantile regression estimation of partially linear additive models

In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.

[1]  Rodney C. Wolff,et al.  Methods for estimating a conditional distribution function , 1999 .

[2]  Gary Chamberlain,et al.  Efficiency Bounds for Semiparametric Regression , 1992 .

[3]  K. Doksum,et al.  On spline estimators and prediction intervals in nonparametric regression , 2000 .

[4]  Oliver Linton,et al.  Testing additivity in generalized nonparametric regression models with estimated parameters , 2001 .

[5]  Lijian Yang,et al.  Spline-backfitted kernel smoothing of partially linear additive model , 2011 .

[6]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[7]  Joel L. Horowitz,et al.  Nonparametric Estimation of an Additive Quantile Regression Model , 2004 .

[8]  Xingdong Feng,et al.  Wild bootstrap for quantile regression. , 2011, Biometrika.

[9]  Moshe Buchinsky Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study , 1995 .

[10]  K. Carriere,et al.  Assessing additivity in nonparametric models —A kernel‐based method , 2011 .

[11]  Dawit Zerom,et al.  On Additive Conditional Quantiles With High-Dimensional Covariates , 2003 .

[12]  E. Mammen,et al.  Backfitting and smooth backfitting for additive quantile models , 2010, 1011.2592.

[13]  Qi Li,et al.  EFFICIENT ESTIMATION OF ADDITIVE PARTIALLY LINEAR MODELS , 2000 .

[14]  Tang Qingguo,et al.  M-estimation and B-spline approximation for varying coefficient models with longitudinal data , 2008 .

[15]  Kengo Kato,et al.  Weighted Nadaraya-Watson estimation of conditional expected shortfall , 2012 .

[16]  J. Powell,et al.  ESTIMATION OF MONOTONIC REGRESSION MODELS UNDER QUANTILE RESTRICTIONS , 1988 .

[17]  Marco Costanigro,et al.  Estimating class‐specific parametric models under class uncertainty: local polynomial regression clustering in an hedonic analysis of wine markets , 2009 .

[18]  Holger Dette,et al.  Testing additivity by kernel-based methods - what is a reasonable test? , 2001 .

[19]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[20]  Q. Shao,et al.  On Parameters of Increasing Dimensions , 2000 .

[21]  S. Lee Endogeneity in Quantile Regression Models: A Control Function Approach , 2004 .

[22]  R. Koenker Quantile Regression: Name Index , 2005 .

[23]  M. C. Jones,et al.  Local Linear Quantile Regression , 1998 .

[24]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[25]  Qi Li,et al.  Efficient Estimation of Additive Partially Linear Models , 2000 .

[26]  Liangjun Su,et al.  Sieve Instrumental Variable Quantile Regression Estimation of Functional Coefficient Models , 2015 .

[27]  J. Horowitz Semiparametric and Nonparametric Methods in Econometrics , 2007 .

[28]  Joel L. Horowitz,et al.  Nonparametric estimation of an additive model with a link function , 2002, math/0508595.

[29]  Zudi Lu,et al.  Local Linear Additive Quantile Regression , 2004 .

[30]  F. Wright,et al.  CONVERGENCE AND PREDICTION OF PRINCIPAL COMPONENT SCORES IN HIGH-DIMENSIONAL SETTINGS. , 2012, Annals of statistics.

[31]  本田 純久 Longitudinal Data , 2003, Encyclopedia of Wireless Networks.

[32]  Zongwu Cai,et al.  REGRESSION QUANTILES FOR TIME SERIES , 2002, Econometric Theory.