Sturmian words and overexponential codimension growth

Abstract Let A be a non necessarily associative algebra over a field of characteristic zero satisfying a non-trivial polynomial identity. If A is a finite dimensional algebra or an associative algebra, it is known that the sequence c n ( A ) , n = 1 , 2 , … , of codimensions of A is exponentially bounded. If A is an infinite dimensional non associative algebra such sequence can have overexponential growth. Such phenomenon is present also in the case of Lie or Jordan algebras. In all known examples the smallest overexponential growth of c n ( A ) is ( n ! ) 1 2 . Here we construct a family of algebras whose codimension sequence grows like ( n ! ) α , for any real number α with 0 α 1 .

[1]  Mikhail Zaicev,et al.  Polynomial identities and asymptotic methods , 2005 .

[2]  A. R. Kemer T-ideals with power growth of the codimensions are specht , 1978 .

[3]  A. Giambruno,et al.  Codimension growth of special simple Jordan algebras , 2009 .

[4]  A. Giambruno,et al.  Codimensions of algebras and growth functions , 2008 .

[5]  A. Giambruno,et al.  Exponential Codimension Growth of PI Algebras: An Exact Estimate , 1999 .

[6]  M. Zaitsev Integrality of exponents of codimension growth of finite-dimensional Lie algebras , 2002 .

[7]  M. Zaicev,et al.  An example of a variety of Lie algebras with a fractional exponent , 1999 .

[8]  Виктор Михайлович Петроградский,et al.  Рост полинильпотентных многообразий алгебр Ли и быстро растущие целые функции@@@Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions , 1997 .

[9]  V. M. Petrogradskiĭ Growth of polynilpotent varieties of Lie algebras and rapidly growing entire functions , 1997 .

[10]  A. Regev Codimensions and trace codimensions of matrices are asymptotically equal , 1984 .

[11]  Mikhail Zaicev,et al.  Finite-dimensional non-associative algebras and codimension growth , 2011, Adv. Appl. Math..

[12]  A. Regev Existence of identities inA⊗B , 1972 .

[13]  Antonio Giambruno,et al.  On codimension growth of finite‐dimensional Lie superalgebras , 2012, J. Lond. Math. Soc..

[14]  Wreath products and P.I. algebras , 1985 .

[15]  I. B. Volichenko Varieties of Lie algebras with the identity [[X1, X2, X3], [X4, X5, X6]]=0 over a field of characteristic zero , 1984 .

[16]  M. Lothaire Algebraic Combinatorics on Words , 2002 .