Output-to-state stability for hybrid systems

Output-to-state stability (OSS) is a dual notion of input-to-state stability for dynamical systems. This paper presents Lyapunov and asymptotic characterizations of OSS for hybrid dynamical systems, emphasizing that a globally detectable (i.e. nonuniformly OSS) hybrid system admits a smooth OSS-Lyapunov function.

[1]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[2]  Chaohong Cai,et al.  Asymptotic characterizations of input-output-to-state stability for discrete-time systems , 2007, Syst. Control. Lett..

[3]  Vadim I. Utkin,et al.  Nonlinear and Optimal Control Theory , 2008 .

[4]  Chaohong Cai,et al.  Characterizations of input-to-state stability for hybrid systems , 2009, Syst. Control. Lett..

[5]  Eduardo D. Sontag,et al.  On the representation of switched systems with inputs by perturbed control systems , 2005 .

[6]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[7]  Chaohong Cai,et al.  A globally detectable hybrid system admits a smooth OSS-Lyapunov function , 2006, 2006 American Control Conference.

[8]  A. Teel,et al.  Relaxation Results for Hybrid Inclusions , 2008 .

[9]  Chaohong Cai,et al.  Smooth Lyapunov Functions for Hybrid Systems—Part I: Existence Is Equivalent to Robustness , 2007, IEEE Transactions on Automatic Control.

[10]  J. Hespanha,et al.  Hybrid systems: Generalized solutions and robust stability , 2004 .

[11]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[12]  Chaohong Cai,et al.  Smooth Lyapunov Functions for Hybrid Systems Part II: (Pre)Asymptotically Stable Compact Sets , 2008, IEEE Transactions on Automatic Control.

[13]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[14]  David Angeli,et al.  Separation Principles for Input-Output and Integral-Input-to-State Stability , 2004, SIAM J. Control. Optim..

[15]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[16]  Chaohong Cai,et al.  Input-output-to-state stability for discrete-time systems , 2008, Autom..

[17]  Alessandro Astolfi,et al.  Global complete observability and output-to-state stability imply the existence of a globally convergent observer , 2006, Math. Control. Signals Syst..

[18]  Ricardo G. Sanfelice,et al.  Invariance Principles for Hybrid Systems With Connections to Detectability and Asymptotic Stability , 2007, IEEE Transactions on Automatic Control.

[19]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[20]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[21]  van der Arjan Schaft,et al.  International Symposium on Mathematical Theory of Networks and Systems , 2012 .

[22]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[23]  David Angeli,et al.  Nonlinear norm-observability notions and stability of switched systems , 2005, IEEE Transactions on Automatic Control.