Euler and Navier–Stokes equations on the hyperbolic plane
暂无分享,去创建一个
[1] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[2] D. Sullivan. The Dirichlet problem at infinity for a negatively curved manifold , 1983 .
[3] Akira Ogawa,et al. Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .
[4] M. Czubak,et al. Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting , 2010, 1006.2819.
[5] Michael E. Taylor,et al. Partial Differential Equations , 1996 .
[6] J. G. Heywood. On uniqueness questions in the theory of viscous flow , 1976 .
[7] R. Temam. Navier-Stokes Equations , 1977 .
[8] Camillo De Lellis,et al. The Euler equations as a differential inclusion , 2007 .
[9] Michael E. Taylor,et al. Partial Differential Equations III , 1996 .
[10] A. Shnirelman. On the nonuniqueness of weak solution of the Euler equation , 1997 .
[11] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[12] Hantaek Bae. Navier-Stokes equations , 1992 .
[13] A. Majda,et al. Vorticity and incompressible flow , 2001 .
[14] Michael T. Anderson. The Dirichlet problem at infinity for manifolds of negative curvature , 1983 .
[15] V. Arnold,et al. Topological methods in hydrodynamics , 1998 .
[16] J. Dodziuk. L^2-harmonic forms on rotationally symmetric Riemannian manifolds , 1979 .