Flavin-N5-oxide intermediates in dibenzothiophene, uracil, and hexachlorobenzene catabolism.

[1]  T. Begley,et al.  Hexachlorobenzene Catabolism Involves a Nucleophilic Aromatic Substitution and Flavin-N5-Oxide Formation. , 2019, Biochemistry.

[2]  P. Fernandes,et al.  Mechanistic Studies of a Flavin Monooxygenase: Sulfur Oxidation of Dibenzothiophenes by DszC , 2018, ACS Catalysis.

[3]  Y. Kanesaki,et al.  Identification of the novel hcbB operon catalyzing the dechlorination of pentachlorophenol in the Gram-positive bacterium Nocardioides sp. strain PD653. , 2018, Journal of pesticide science.

[4]  B. Moore,et al.  Enzymatic control of dioxygen binding and functionalization of the flavin cofactor , 2018, Proceedings of the National Academy of Sciences.

[5]  R. Teufel Preparation and Characterization of the Favorskiiase Flavoprotein EncM and Its Distinctive Flavin-N5-Oxide Cofactor. , 2018, Methods in enzymology.

[6]  R. Teufel Flavin-catalyzed redox tailoring reactions in natural product biosynthesis. , 2017, Archives of biochemistry and biophysics.

[7]  S. Rokita,et al.  The distribution and mechanism of iodotyrosine deiodinase defied expectations. , 2017, Archives of biochemistry and biophysics.

[8]  T. Begley,et al.  Flavin-N5-oxide: A new, catalytic motif in flavoenzymology. , 2017, Archives of biochemistry and biophysics.

[9]  Y. Kanesaki,et al.  Identification of the hcb Gene Operon Involved in Catalyzing Aerobic Hexachlorobenzene Dechlorination in Nocardioides sp. Strain PD653 , 2017, Applied and Environmental Microbiology.

[10]  T. Begley,et al.  RutA-Catalyzed Oxidative Cleavage of the Uracil Amide Involves Formation of a Flavin-N5-oxide. , 2017, Biochemistry.

[11]  B. Moore,et al.  Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. , 2017, Chemical reviews.

[12]  B. Palfey,et al.  Initial investigations of C4a-(hydro)peroxyflavin intermediate formation by dibenzothiophene monooxygenase. , 2016, Biochemical and biophysical research communications.

[13]  T. Begley,et al.  Dibenzothiophene Catabolism Proceeds via a Flavin-N5-oxide Intermediate. , 2016, Journal of the American Chemical Society.

[14]  B. Moore,et al.  Unusual flavoenzyme catalysis in marine bacteria. , 2016, Current opinion in chemical biology.

[15]  M. Tanokura,et al.  Crystal structures of apo‐DszC and FMN‐bound DszC from Rhodococcus erythropolis D‐1 , 2015, The FEBS journal.

[16]  P. Dorrestein,et al.  Biochemical Establishment and Characterization of EncM's Flavin-N5-oxide Cofactor. , 2015, Journal of the American Chemical Society.

[17]  S. Rokita,et al.  A Switch between One- and Two-electron Chemistry of the Human Flavoprotein Iodotyrosine Deiodinase Is Controlled by Substrate* , 2014, The Journal of Biological Chemistry.

[18]  S. Rokita,et al.  Iodotyrosine deiodinase: a unique flavoprotein present in organisms of diverse phyla. , 2014, Molecular bioSystems.

[19]  B. Moore,et al.  Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement , 2013, Nature.

[20]  S. Copley,et al.  Pentachlorophenol hydroxylase, a poorly functioning enzyme required for degradation of pentachlorophenol by Sphingobium chlorophenolicum. , 2012, Biochemistry.

[21]  T. Begley,et al.  Catalysis of a flavoenzyme-mediated amide hydrolysis. , 2010, Journal of the American Chemical Society.

[22]  Jennifer M. Adler,et al.  Crystal Structure of Iodotyrosine Deiodinase, a Novel Flavoprotein Responsible for Iodide Salvage in Thyroid Glands* , 2009, The Journal of Biological Chemistry.

[23]  P. Karplus,et al.  Typical 2‐Cys peroxiredoxins – structures, mechanisms and functions , 2009, The FEBS journal.

[24]  M. Koay,et al.  Synthesis and Electrochemical Properties of Structurally Modified Flavin Compounds , 2008 .

[25]  A. Margaritis,et al.  Biodesulfurization of refractory organic sulfur compounds in fossil fuels. , 2007, Biotechnology advances.

[26]  J. Strap,et al.  The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP , 2007, Biodegradation.

[27]  M. Tanokura,et al.  Crystal Structure and Desulfurization Mechanism of 2′-Hydroxybiphenyl-2-sulfinic Acid Desulfinase* , 2006, Journal of Biological Chemistry.

[28]  W. Inwood,et al.  A previously undescribed pathway for pyrimidine catabolism. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. Jones,et al.  Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes. , 2005, The Science of the total environment.

[30]  Lei Xi,et al.  Molecular mechanisms of biocatalytic desulfurization of fossil fuels , 1996, Nature Biotechnology.

[31]  B. Kovacevich,et al.  Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8 , 1995, Applied and environmental microbiology.

[32]  K. Young,et al.  Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8 , 1994, Journal of bacteriology.

[33]  Edwin S. Olson,et al.  Identification and Cloning of Genes Involved in Specific Desulfurization of Dibenzothiophene by Rhodococcus sp. Strain IGTS8 , 1993, Applied and environmental microbiology.

[34]  P. Heelis The photophysical and photochemical properties of flavins (isoalloxazines) , 1982 .

[35]  C. Veeger,et al.  On the mechanisms of photochemical reductions of FAD and FAD-dependent flavoproteins. , 1967, European journal of biochemistry.

[36]  K. Enns,et al.  The Photochemical Oxidation of Ethylenediaminetetraacetic Acid and Methionine by Ribolflavin1 , 1965 .