Reference Priors for the General Location-Scale Model

The reference prior algorithm (Berger and Bernardo 1992) is applied to multivariate location-scale models with any regular sampling density, where we establish the irrelevance of the usual assumption of Normal sampling if our interest is in either the location or the scale. This result immediately extends to the linear regression model. On the other hand, an essentially arbitrary step in the reference prior algorithm, namely the choice of the nested sequence of sets in the parameter space is seen to play a role. Our results lend an additional motivation to the often used prior proportional to the inverse of the scale parameter, as it is found to be both the independence Jeffreys' prior and the reference prior under variation independence in the sequence of sets, for any choice of the sampling density. However, if our parameter of interest is not a one-to-one transformation of either location or scale, the choice of the sampling density is generally shown to intervene.

[1]  R. Tibshirani Noninformative priors for one parameter of many , 1989 .

[2]  G. Datta On priors providing frequentist validity of Bayesian inference for multiple parametric functions , 1996 .

[3]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[4]  Charles Stein,et al.  An Example of Wide Discrepancy Between Fiducial and Confidence Intervals , 1959 .

[5]  Dongchu Sun,et al.  Reference priors with partial information , 1998 .

[6]  M. Degroot Optimal Statistical Decisions , 1970 .

[7]  Mark F. J. Steel,et al.  Robust Bayesian inference in lq-spherical models , 1993 .

[8]  M. Steel,et al.  Modeling and Inference with υ-Spherical Distributions , 1995 .

[9]  D. Dey,et al.  Frequentist validity of posterior quantiles in the presence of a nuisance parameter : higher order asymptotics , 1993 .

[10]  James O. Berger,et al.  ESTIMATION OF QUADRATIC FUNCTIONS: NONINFORMATIVE PRIORS FOR NON-CENTRALITY PARAMETERS , 1998 .

[11]  Debabrata Basu,et al.  On the Elimination of Nuisance Parameters , 1977 .

[12]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[13]  J. Bernardo,et al.  An introduction to Bayesian reference analysis: inference on the ratio of multinomial parameters , 1998 .

[14]  Malay Ghosh,et al.  ON THE INVARIANCE OF NONINFORMATIVE PRIORS , 1996 .

[15]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[16]  Larry Wasserman,et al.  Noninformative priors and nuisance parameters , 1993 .

[17]  Bertrand Clarke,et al.  Implications of Reference Priors for Prior Information and for Sample Size , 1996 .

[18]  Yong Yang Invariance of the reference prior under reparametrization , 1995 .

[19]  Malay Ghosh,et al.  Some remarks on noninformative priors , 1995 .

[20]  M. Steel,et al.  On Bayesian Inference under Sampling from Scale Mixtures of Normals , 1996 .