Global and local scaling limits for the β = 2 Stieltjes–Wigert random matrix ensemble

The eigenvalue probability density function (PDF) for the Gaussian unitary ensemble has a well-known analogy with the Boltzmann factor for a classical log-gas with pair potential [Formula: see text], confined by a one-body harmonic potential. A generalization is to replace the pair potential by [Formula: see text]. The resulting PDF first appeared in the statistical physics literature in relation to non-intersecting Brownian walkers, equally spaced at time [Formula: see text], and subsequently in the study of quantum many-body systems of the Calogero–Sutherland type, and also in Chern–Simons field theory. It is an example of a determinantal point process with correlation kernel based on the Stieltjes–Wigert polynomials. We take up the problem of determining the moments of this ensemble, and find an exact expression in terms of a particular little [Formula: see text]-Jacobi polynomial. From their large [Formula: see text] form, the global density can be computed. Previous work has evaluated the edge scaling limit of the correlation kernel in terms of the Ramanujan ([Formula: see text]-Airy) function. We show how in a particular [Formula: see text] scaling limit, this reduces to the Airy kernel.

[1]  Miguel Tierz,et al.  Riemannian Gaussian distributions, random matrix ensembles and diffusion kernels , 2020, Nuclear Physics B.

[2]  P. Forrester,et al.  Classical skew orthogonal polynomials in a two-component log-gas with charges +1 and +2 , 2019, Advances in Mathematics.

[3]  R. Bhatia Positive Definite Matrices , 2007 .

[4]  P. Forrester Moments of the ground state density for the d-dimensional Fermi gas in an harmonic trap , 2019, 1909.09918.

[5]  P. Forrester,et al.  Classical discrete symplectic ensembles on the linear and exponential lattice: skew orthogonal polynomials and correlation functions , 2019, Transactions of the American Mathematical Society.

[6]  N. Simm,et al.  Communications in Mathematical Physics Moments of Random Matrices and Hypergeometric Orthogonal Polynomials , 2019 .

[7]  D. Dai,et al.  Asymptotics of partition functions in a fermionic matrix model and of related q‐polynomials , 2018, Studies in Applied Mathematics.

[8]  P. Forrester,et al.  Volumes and distributions for random unimodular complex and quaternion lattices , 2017, Journal of Number Theory.

[9]  Baba C. Vemuri,et al.  Gaussian Distributions on Riemannian Symmetric Spaces: Statistical Learning With Structured Covariance Matrices , 2016, IEEE Transactions on Information Theory.

[10]  H. Yau,et al.  A Dynamical Approach to Random Matrix Theory , 2017 .

[11]  S. Majumdar,et al.  Exact Extremal Statistics in the Classical 1D Coulomb Gas. , 2017, Physical review letters.

[12]  M. Tierz Polynomial solution of quantum Grassmann matrices , 2017, 1703.02454.

[13]  Nils Haug,et al.  Asymptotics and scaling analysis of 2-dimensional lattice models of vesicles and polymers , 2017 .

[14]  T. Prellberg,et al.  Uniform asymptotics of area-weighted Dyck paths , 2014, 1412.5108.

[15]  P. Forrester,et al.  Raney Distributions and Random Matrix Theory , 2014, 1404.5759.

[16]  T. Morita The Stokes phenomenon for the q-difference equation satisfied by the Ramanujan entire function , 2014 .

[17]  P. Forrester,et al.  Moments of the Gaussian $\beta$ Ensembles and the large-$N$ expansion of the densities , 2013, 1310.8498.

[18]  R. J. Szabo,et al.  q-deformations of two-dimensional Yang–Mills theory: Classification, categorification and refinement , 2013, 1305.1580.

[19]  Y. T. Li,et al.  Global Asymptotics of Stieltjes-Wigert Polynomials , 2013, 1302.5193.

[20]  M. Faizal,et al.  Chern-Simons-Matter Theory , 2013, 1301.5664.

[21]  Yuta Takahashi,et al.  Noncolliding Brownian Motion with Drift and Time-Dependent Stieltjes-Wigert Determinantal Point Process , 2012, 1207.4351.

[22]  M. Mariño Lectures on localization and matrix models in supersymmetric Chern–Simons-matter theories , 2011, 1104.0783.

[23]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[24]  Andrea Brini,et al.  The uses of the refined matrix model recursion , 2010, 1010.1210.

[25]  P. Forrester Log-Gases and Random Matrices , 2010 .

[26]  M. Tierz,et al.  Chern–Simons matrix models, two-dimensional Yang–Mills theory and the Sutherland model , 2010, 1003.1228.

[27]  Y. Kuramoto,et al.  Dynamics of One-Dimensional Quantum Systems , 2009 .

[28]  M. Tierz CHERN–SIMONS THEORY, EXACTLY SOLVABLE MODELS AND FREE FERMIONS AT FINITE TEMPERATURE , 2008, 0808.1079.

[29]  M. Ismail,et al.  Zeros of entire functions and a problem of Ramanujan , 2007 .

[30]  Kazumi Okuyama D-brane amplitudes in topological string on conifold , 2006, hep-th/0606048.

[31]  M. Tierz,et al.  Chern-Simons matrix models and Stieltjes-Wigert polynomials , 2006, hep-th/0609167.

[32]  K. Kajiwara,et al.  Hypergeometric Solutions to the q-Painlev\'e Equation of Type $(A_1+A_1')^{(1)}$ , 2006, nlin/0607065.

[33]  J. Baik,et al.  Random matrix central limit theorems for nonintersecting random walks , 2006, math/0605212.

[34]  S. Garoufalidis,et al.  On Chern-Simons matrix models , 2006, math/0601390.

[35]  E. Koelink,et al.  Self-adjoint difference operators and classical solutions to the Stieltjes-Wigert moment problem , 2005, J. Approx. Theory.

[36]  K. Kajiwara,et al.  Hypergeometric solutions to the q-Painleve equation of type $$ _ + _ ^{\prime })}^ $$ , 2006 .

[37]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[38]  S. Haro,et al.  Discrete and oscillatory Matrix Models in Chern-Simons theory , 2005, hep-th/0501123.

[39]  M. Mariño Chern-Simons Theory, Matrix Integrals, and Perturbative Three-Manifold Invariants , 2002, hep-th/0207096.

[40]  M. Ismail Asymptotics of q-orthogonal polynomials and a q-Airy function , 2005 .

[41]  M. Mariño Les Houches lectures on matrix models and topological strings , 2004, hep-th/0410165.

[42]  M. Tierz SOFT MATRIX MODELS AND CHERN–SIMONS PARTITION FUNCTIONS , 2002, hep-th/0212128.

[43]  N. Halmagyi,et al.  The spectral curve of the lens space matrix model , 2003, hep-th/0311117.

[44]  M. Katori,et al.  Scaling limit of vicious walks and two-matrix model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Arno B. J. Kuijlaars,et al.  The Asymptotic Zero Distribution of Orthogonal Polynomials with Varying Recurrence Coefficients , 1999 .

[46]  Yang Chen,et al.  Density of zeros of some orthogonal polynomials , 1998 .

[47]  G. Leibbrandt CHERN-SIMONS THEORY , 1994 .

[48]  P. Forrester Properties of an exact crystalline many-body ground state , 1994 .

[49]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[50]  P. Forrester Vicious random walkers in the limit of a large number of walkers , 1989 .

[51]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[52]  Walter Van Assche,et al.  Asymptotics for Orthogonal Polynomials , 1987 .

[53]  J. Harer,et al.  The Euler characteristic of the moduli space of curves , 1986 .

[54]  Lattice Gauge Theory, Orthogonal Polynomials and q-Hypergeometric Functions , 1984 .

[55]  P. Forrester,et al.  The two-dimensional one-component plasma at Γ=2: The semiperiodic strip , 1983 .

[56]  E. Onofri SU(N) lattice gauge theory with villain’s action , 1981 .

[57]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[58]  伏見 康治,et al.  Some formal properties of the density matrix , 1940 .

[59]  S. Bochner,et al.  Über Sturm-Liouvillesche Polynomsysteme , 1929 .

[60]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .