Type Theory and Formal Proof: An Introduction
暂无分享,去创建一个
[1] Herman Geuvers,et al. Proof-Assistants Using Dependent Type Systems , 2001, Handbook of Automated Reasoning.
[2] Martha Kneale,et al. The development of logic , 1963 .
[3] F. J. Pelletier. A Brief History of Natural Deduction , 1999 .
[4] Rp Rob Nederpelt,et al. N.G. de Bruijn’s contribution to the formalization of mathematics , 2013 .
[5] A. Church. A Set of Postulates for the Foundation of Logic , 1932 .
[6] de Ng Dick Bruijn,et al. The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .
[7] B. Russell. The Principles of Mathematics , 1938 .
[8] Yves Bertot,et al. Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .
[9] P. Bernays,et al. Grundlagen der Mathematik , 1934 .
[10] J. V. Tucker,et al. Sets: Naïve, Axiomatic and Applied , 1979 .
[11] Georges Gonthier,et al. Formal Proof—The Four- Color Theorem , 2008 .
[12] L. S. van Benthem Jutting. Typing in Pure Type Systems , 1993, Inf. Comput..
[13] Fairouz Kamareddine,et al. Logical Reasoning: A First Course , 2004 .
[14] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[15] Andrea Asperti,et al. The Matita Interactive Theorem Prover , 2011, CADE.
[16] H. Simmons. Derivation and Computation: Taking the Curry-Howard Correspondence Seriously , 2000 .
[17] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[18] Christos H. Papadimitriou,et al. Elements of the Theory of Computation , 1997, SIGA.
[19] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[20] Herman Geuvers,et al. A short and flexible proof of Strong Normalization for the Calculus of Constructions , 1994, TYPES.
[21] Tobias Nipkow,et al. A Revision of the Proof of the Kepler Conjecture , 2009, Discret. Comput. Geom..
[22] Corrado Böhm,et al. Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..
[23] Ulf Norell,et al. A Brief Overview of Agda - A Functional Language with Dependent Types , 2009, TPHOLs.
[24] Helmut Schwichtenberg,et al. Definierbare Funktionen imλ-Kalkül mit Typen , 1975, Archive for Mathematical Logic.
[25] van Ls Bert Benthem Jutting,et al. Checking Landau's “Grundlagen” in the Automath System: Appendices 3 and 4 (The PN-lines; Excerpt for “Satz 27”) , 1994 .
[26] Furio Honsell,et al. A framework for defining logics , 1993, JACM.
[27] Michael J. C. Gordon,et al. From LCF to HOL: a short history , 2000, Proof, Language, and Interaction.
[28] Richard Statman,et al. Lambda Calculus with Types , 2013, Perspectives in logic.
[29] de Ng Dick Bruijn,et al. A survey of the project Automath , 1980 .
[30] Elliott Mendelson,et al. Introduction to Mathematical Logic , 1979 .
[31] Alonzo Church,et al. A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.
[32] Fairouz Kamareddine,et al. A Modern Perspective on Type Theory: From Its Origins Until Today , 2004 .
[33] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[34] Robin Milner,et al. Principal type-schemes for functional programs , 1982, POPL '82.
[35] Jean-Yves Girard,et al. The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..
[36] H. Cantor. Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. , 1984 .
[37] Bengt Nordström,et al. The ALF Proof Editor and Its Proof Engine , 1994, TYPES.
[38] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[39] Leslie Lamport,et al. Latex : A Document Preparation System , 1985 .
[40] M. Sørensen,et al. Lectures on the Curry-Howard Isomorphism , 2013 .
[41] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[42] Herman Geuvers,et al. Rewriting for Fitch Style Natural Deductions , 2004, RTA.
[43] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[44] J. Girard,et al. Proofs and types , 1989 .
[45] H. B. Curry. Modified basic functionality in combinatory logic , 1969 .
[46] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[47] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[48] J. Seldin. Progress report on generalized functionality , 1979 .
[49] John McCarthy,et al. LISP 1.5 Programmer's Manual , 1962 .
[50] J. Roger Hindley,et al. Lambda-Calculus and Combinators in the 20th Century , 2009, Logic from Russell to Church.
[51] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[52] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[53] Thierry Coquand,et al. The Calculus of Constructions , 1988, Inf. Comput..
[54] Jeffery I. Zucker. Formalization of Classical Mathematics in Automath , 1994 .
[55] Thomas Sudkamp. Languages and Machines: An Introduction to the Theory of Computer Science , 2005 .
[56] F. B. Fitch. Symbolic Logic, An Introduction , 1953 .
[57] J. Roger Hindley,et al. Lambda-Calculus and Combinators: An Introduction , 2008 .
[58] J. V. Tucker,et al. Basic Simple Type Theory , 1997 .
[59] R. Hindley. The Principal Type-Scheme of an Object in Combinatory Logic , 1969 .
[60] G.D. Plotkin,et al. LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..
[61] F. Dechesne,et al. N.G. de Bruijn (1918–2012) and his Road to Automath, the Earliest Proof Checker , 2012 .
[62] Fairouz Kamareddine,et al. Types in logic and mathematics before 1940 , 2002, Bull. Symb. Log..
[63] Frank Pfenning,et al. Logical Frameworks—A Brief Introduction , 2002 .
[64] James McKinna,et al. Checking Algorithms for Pure Type Systems , 1994, TYPES.
[65] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[66] Benjamin C. Pierce,et al. Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..
[67] J. B. Wells,et al. Typability and type checking in the second-order /spl lambda/-calculus are equivalent and undecidable , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
[68] Erik Poll,et al. Pure Type Systems with Definitions , 1994, LFCS.
[69] van Dt Diederik Daalen,et al. A description of Automath and some aspects of its language theory , 1973 .
[70] A. Church. An Unsolvable Problem of Elementary Number Theory , 1936 .
[71] Herman Geuvers,et al. Induction Is Not Derivable in Second Order Dependent Type Theory , 2001, TLCA.
[72] Nonie K. Lesaux,et al. The language of mathematics: investigating the ways language counts for children's mathematical development. , 2013, Journal of experimental child psychology.
[73] Tobias Nipkow,et al. The Isabelle Reference Manual , 2007 .
[74] F. Ramsey. The foundations of mathematics , 1932 .
[75] T. Coquand. Une théorie des constructions , 1985 .
[76] Rp Rob Nederpelt,et al. De Bruijn's Automath and pure type systems , 2003 .
[77] Zhaohui Luo,et al. Computation and reasoning - a type theory for computer science , 1994, International series of monographs on computer science.
[78] Luis E. Sanchis,et al. Functionals defined by recursion , 1967, Notre Dame J. Formal Log..
[79] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[80] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[81] Bengt Nordström,et al. Programming in Martin-Lo¨f's type theory: an introduction , 1990 .
[82] Haskell B. Curry. Grundlagen der kombinatorischen Logik , 1930 .
[83] Masako Takahashi. Parallel Reductions in lambda-Calculus , 1995, Inf. Comput..
[84] Benjamin C. Pierce,et al. Advanced Topics In Types And Programming Languages , 2004 .
[85] William W. Tait,et al. Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.
[86] Jeremy Avigad,et al. A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.
[87] B. Russell. Mathematical Logic as Based on the Theory of Types , 1908 .
[88] J. H. Geuvers,et al. Proof assistants: History, ideas and future , 2009 .
[89] John C. Reynolds,et al. Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.
[90] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[91] Zhaohui Luo,et al. ECC, an extended calculus of constructions , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.