Group Presentations, Formal Languages and Characterizations of One-Counter Groups

Abstract In this paper, we give a survey of various connections between the theories of group presentations and formal languages, concentrating on groups in which the word problem is a regular, one-counter or context-free language. We also prove some new results on one-counter groups.

[1]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[2]  J. Schur,et al.  Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen. , 1904 .

[3]  Luc Boasson,et al.  Groups and NTS Languages , 1987, J. Comput. Syst. Sci..

[4]  Howard Straubing,et al.  New Results on the Generalized Star-Height Problem , 1989, STACS.

[5]  Wilhelm Magnus,et al.  Residually finite groups , 1969 .

[6]  J. Sakarovitch Sur les groupes infinis, consideres comme monoides syntaxiques de langages formels , 1977 .

[7]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[8]  Marcel Paul Schützenberger,et al.  On a Question of Eggan , 1966, Inf. Control..

[9]  Jean Berstel,et al.  Context-Free Languages , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[10]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[11]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[12]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[13]  A. V. Anisimov,et al.  Some algorithmic problems for groups and context-free languages , 1972 .

[14]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[15]  Friedhelm Hinz Classes of Picture Languages that Cannot be Distinguished in the Chain Code Concept and Deletion of Redundant Retreats , 1989, STACS.

[16]  Günter Hotz,et al.  Eine neue Invariante für Kontextfreie Sprachen , 1980, Theor. Comput. Sci..

[17]  Gregory Karpilovsky,et al.  The Schur multiplier , 1987 .

[18]  Thomas Herbst On a subclass of context-free groups , 1991, RAIRO Theor. Informatics Appl..

[19]  J. Sakarovitch,et al.  Finiteness Conditions on Subgroups and Formal Language Theory , 1989 .

[20]  Janusz A. Brzozowski,et al.  OPEN PROBLEMS ABOUT REGULAR LANGUAGES , 1980 .

[21]  John Stallings,et al.  Group Theory and Three-dimensional Manifolds , 1971 .

[22]  Daniel E Cohen,et al.  Groups of Cohomological Dimension One , 1972 .

[23]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[24]  David E. Muller,et al.  Groups, the Theory of Ends, and Context-Free Languages , 1983, J. Comput. Syst. Sci..

[25]  Thomas Herbst Some Remarks on a Theorem of Sakarovitch , 1992, J. Comput. Syst. Sci..

[26]  W. Magnus,et al.  Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .

[27]  Franz D. Seifert,et al.  Zur algebraischen Charakteristik der durch kontext-freie Sprachen definierten Gruppen , 1975, J. Inf. Process. Cybern..

[28]  M. J. Dunwoody The accessibility of finitely presented groups , 1985 .