CTL* and ECTL* as Fragments of the Modal mu-Calculus

Abstract Direct embeddings of the full branching-time CTL ∗ and its extension ECTL ∗ into the modal μ-calculus are presented. The embeddings use tableaux as intermediate representations of formulas, and use extremal fixed points to characterise those paths through tableaux that satisfy an admissibility criterion, guaranteeing eventualities to be eventually satisfied. The version of ECTL ∗ considered replaces the entire linear-time fragment of CTL ∗ by Buchi automata on infinite strings. As a consequence the embedding of ECTL ∗ turns out to be computable in linear time, while the embedding of CTL ∗ is doubly exponential in the worst case.

[1]  Mordechai Ben-Ari,et al.  The temporal logic of branching time , 1981, POPL '81.

[2]  E. Allen Emerson,et al.  The complexity of tree automata and logics of programs , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[3]  Joseph Y. Halpern,et al.  "Sometimes" and "not never" revisited: on branching versus linear time (preliminary report) , 1983, POPL '83.

[4]  Colin Stirling,et al.  Verifying Temporal Properties of Processes , 1990, CONCUR.

[5]  Edmund M. Clarke,et al.  A Synthesis of Two Approaches for Verifying Finite State Concurrent Systems , 1989, J. Log. Comput..

[6]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[7]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[8]  A. Prasad Sistla,et al.  Deciding Full Branching Time Logic , 1985, Inf. Control..

[9]  Amir Pnueli,et al.  The Glory of the Past , 1985, Logic of Programs.

[10]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[11]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[12]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[13]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[14]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[15]  Wolfgang Thomas Computation tree logic and regular omega-languages , 1988, REX Workshop.

[16]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theor. Comput. Sci..

[17]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[18]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[19]  Edmund M. Clarke,et al.  Automatic Verification of Asynchronous Circuits , 1983, Logic of Programs.

[20]  Pierre Wolper,et al.  Reasoning about infinite computation paths , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[21]  Pierre Wolper,et al.  Yet Another Process Logic (Preliminary Version) , 1983, Logic of Programs.

[22]  David Gries An exercise in proving parallel programs correct , 1977, CACM.

[23]  Edmund M. Clarke,et al.  Automatic Verification of Sequential Circuits Using Temporal Logic , 1986, IEEE Transactions on Computers.

[24]  Rance Cleaveland,et al.  A Semantics Based Verification Tool for Finite State Systems , 1989, PSTV.

[25]  Wolfgang Thomas,et al.  Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..

[26]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[27]  E. Allen Emerson,et al.  An Automata Theoretic Decision Procedure for the Propositional Mu-Calculus , 1989, Inf. Comput..

[28]  Robert S. Streett,et al.  Propositional Dynamic Logic of Looping and Converse Is Elementarily Decidable , 1982, Inf. Control..

[29]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[30]  Damian Niwinski,et al.  Fixed points vs. infinite generation , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.