Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite

When cubic PbCrO3 perovskite (Phase I) is squeezed up to ∼1.6 GPa at room temperature, a previously undetected phase (Phase II) has been observed with a 9.8% volume collapse. Because the structure of Phase II can also be indexed into a cubic perovskite as Phase I, the transition between Phases I and II is a cubic to cubic isostructural transition. Such a transition appears independent of the raw materials and synthesizing methods used for the cubic PbCrO3 perovskite sample. In contrast to the high-pressure isostructural electronic transition that appears in Ce and SmS, this transition seems not related with any change of electronic state, but it could be possibly related on the abnormally large volume and compressibility of the PbCrO3 Phase I. The physical mechanism behind this transition and the structural and electronic/magnetic properties of the condensed phases are the interesting issues for future studies.

[1]  M. Alario-Franco,et al.  Antiferromagnetism and spin reorientation in "PbCrO3". , 2009, Inorganic chemistry.

[2]  M. Alario-Franco,et al.  Increasing the structural complexity of chromium(IV) oxides by high-pressure and high-temperature reactions of CrO2. , 2008, Inorganic chemistry.

[3]  V. Anisimov,et al.  Band versus localized electron magnetism in CaCrO 3 , 2008 .

[4]  W. Evans,et al.  Thermal signatures of the Kondo volume collapse in cerium. , 2008, Physical review letters.

[5]  J. Goodenough,et al.  High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates , 2008, Proceedings of the National Academy of Sciences.

[6]  V. Anisimov,et al.  CaCrO3: an anomalous antiferromagnetic metallic oxide. , 2008, Physical review letters.

[7]  M. Alario-Franco,et al.  Structure, microstructure and magnetic properties of Sr1−xCaxCrO3 (0⩽x⩽1) , 2008 .

[8]  J. Attfield,et al.  Microstrain sensitivity of orbital and electronic phase separation in SrCrO3. , 2007, Physical review letters.

[9]  M. Alario-Franco,et al.  On the structure and microstructure of PbCrO3 , 2007 .

[10]  Rick Ubic,et al.  Revised Method for the Prediction of Lattice Constants in Cubic and Pseudocubic Perovskites , 2007 .

[11]  R. L. Moreira,et al.  Comment on “Prediction of lattice constant in cubic perovskites” , 2007, cond-mat/0703451.

[12]  M. Zhu,et al.  Prediction of lattice constant in cubic perovskites , 2006 .

[13]  L. Dubrovinsky,et al.  Consequences of pressure-instigated spin crossover in RFeO 3 perovskites; a volume collapse with no symmetry modification , 2005 .

[14]  M. Azuma,et al.  Crystallographic Features and Tetragonal Phase Stability of PbVO3, a New Member of PbTiO3 Family. , 2005 .

[15]  J. Goodenough,et al.  Anomalous electronic state in CaCrO3 and SrCrO3. , 2005, Physical review letters.

[16]  R. Scalettar,et al.  First-order isostructural Mott transition in highly compressed MnO. , 2005, Physical review letters.

[17]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[18]  M I McMahon,et al.  Complex crystal structure of cesium-III. , 2001, Physical review letters.

[19]  M. Yousuf,et al.  Pressure induced isostructural and structural transitions in ThAl2 , 1996 .

[20]  M. Abd-Elmeguid 133Cs high pressure Mössbauer spectroscopy: a new powerful tool for studying charge transfer and lattice dynamics in metallic Cs , 1995 .

[21]  R. Asokamani,et al.  ELECTRONIC STRUCTURE OF THE PEROVSKITE OXIDES SrCrO3 AND PbCrO3 , 1992 .

[22]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[23]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[24]  M. Snider,et al.  Letter: Maximum expiratory flow-volume curves. , 1975, Journal of applied physiology.

[25]  S. Louie,et al.  ELECTRONIC STRUCTURE OF CESIUM UNDER PRESSURE , 1974 .

[26]  B. Chamberland,et al.  A study on the PbCrO3 perovskite , 1972 .

[27]  J. L. Gillson,et al.  Magnetic and electrical transport properties of CaCrO3 , 1971 .

[28]  M. Maple,et al.  Nonmagnetic 4 f Shell in the High-Pressure Phase of SmS , 1971 .

[29]  J. Goodenough,et al.  Band antiferromagnetism and the new perovskite CaCrO3 , 1968 .

[30]  W. Roth,et al.  High‐pressure Synthesis of PbCrO3 , 1968 .

[31]  B. Chamberland Preparation and properties of SrCrO3 , 1967 .

[32]  W. Roth,et al.  Crystal and Magnetic Structure of PbCrO3 , 1967 .

[33]  H. T. Hall,et al.  High Pressure Polymorphism in Cesium , 1964, Science.

[34]  A. W. Lawson,et al.  Concerning the High Pressure Allotropic Modification of Cerium , 1949 .

[35]  E. C. Martínez,et al.  Electron energy loss spectroscopy in ACrO3 (A = Ca, Sr and Pb) perovskites , 2008 .

[36]  M. Azuma,et al.  Crystallographic Features and Tetragonal Phase Stability of PbVO3, a New Member of PbTiO3 Family , 2005 .

[37]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .