Edge-Connection of Graphs, Digraphs, and Hypergraphs

In this work extensions and variations of the notion of edge-connectivity of undirected graphs, directed graphs, and hypergraphs will be considered. We show how classical results concerning orientations and connectivity augmentations may be formulated in this more general setting.

[1]  Lebrecht Henneberg,et al.  Die graphische Statik der Starren Systeme , 1911 .

[2]  H. Robbins A Theorem on Graphs, with an Application to a Problem of Traffic Control , 1939 .

[3]  C. Nash-Williams On Orientations, Connectivity and Odd-Vertex-Pairings in Finite Graphs , 1960, Canadian Journal of Mathematics.

[4]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .

[5]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[6]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .

[7]  J. Edmonds Minimum partition of a matroid into independent subsets , 1965 .

[8]  D. R. Fulkerson,et al.  Transversals and Matroid Partition , 1965 .

[9]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[10]  W. Mader Ecken vom Innen- und Außengradn in minimaln-fach kantenzusammenhängenden Digraphen , 1974 .

[11]  A. Nijenhuis Combinatorial algorithms , 1975 .

[12]  L. Lovász 2-Matchings and 2-covers of hypergraphs , 1975 .

[13]  T. Magnanti,et al.  Some Abstract Pivot Algorithms , 1975 .

[14]  László Lovász,et al.  On two minimax theorems in graph , 1976, J. Comb. Theory, Ser. B.

[15]  W. Mader A Reduction Method for Edge-Connectivity in Graphs , 1978 .

[16]  L. Lovász Combinatorial problems and exercises , 1979 .

[17]  Alexander Schrijver A counterexample to a conjecture of Edmonds and Giles , 1980, Discret. Math..

[18]  F. Boesch,et al.  ROBBINS'S THEOREM FOR MIXED MULTIGRAPHS , 1980 .

[19]  András Frank,et al.  On the orientation of graphs , 1980, J. Comb. Theory, Ser. B.

[20]  Wolfgang Mader,et al.  Konstruktion aller n-fach kantenzusammenhängenden Digraphen , 1982, Eur. J. Comb..

[21]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[22]  A. Schrijver Total Dual Integrality from Directed Graphs, Crossing Families, and Sub- and Supermodular Functions , 1984 .

[23]  C. Nash-Williams,et al.  Connected detachments of graphs and generalized Euler trails , 1985 .

[24]  L. Lovász,et al.  Annals of Discrete Mathematics , 1986 .

[25]  Akira Nakamura,et al.  Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..

[26]  András Frank Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..

[27]  András Frank,et al.  On a theorem of Mader , 1992, Discret. Math..

[28]  A. Frank Applications of submodular functions , 1993 .

[29]  András Frank,et al.  Preserving and Increasing Local Edge-Connectivity in Mixed Graphs , 1995, SIAM J. Discret. Math..

[30]  András Frank,et al.  Minimal Edge-Coverings of Pairs of Sets , 1995, J. Comb. Theory B.

[31]  Tibor Jordán,et al.  Edge-connectivity augmentation with partition constraints , 1998, SODA '98.

[32]  Zoltán Szigeti Hypergraph connectivity augmentation , 1999, Math. Program..

[33]  András Frank,et al.  Covering symmetric supermodular functions by graphs , 1999, Math. Program..

[34]  Matthias Kriesell,et al.  Local spanning trees in graphs and hypergraph decomposition with respect to edge connectivity , 1999, Electron. Notes Discret. Math..

[35]  Tibor Jordán,et al.  Coverings and structure of crossing families , 1999, Math. Program..

[36]  Jørgen Bang-Jensen,et al.  Augmenting hypergraphs by edges of size two , 1999, Math. Program..

[37]  Joseph Naor,et al.  Directed network design with orientation constraints , 2000, SODA '00.

[38]  András Frank,et al.  An orientation theorem with parity conditions , 2001 .

[39]  András Frank,et al.  An Extension of a Theorem of Henneberg and Laman , 2001, IPCO.

[40]  András Frank,et al.  Graph Orientations with Edge-connection and Parity Constraints , 2002, Comb..

[41]  András Frank,et al.  Egerváry Research Group on Combinatorial Optimization on Decomposing a Hypergraph into K Connected Sub-hypergraphs on Decomposing a Hypergraph into K Connected Sub-hypergraphs , 2022 .

[42]  András Frank,et al.  Egerváry Research Group on Combinatorial Optimization on the Orientation of Graphs and Hypergraphs on the Orientation of Graphs and Hypergraphs , 2022 .

[43]  András Frank,et al.  Egerváry Research Group on Combinatorial Optimization Constructive Characterizations for Packing and Covering with Trees Constructive Characterizations for Packing and Covering with Trees , 2022 .

[44]  Bill Jackson,et al.  Highly edge-connected detachments of graphs and digraphs , 2003, J. Graph Theory.

[45]  Bill Jackson,et al.  Edge splitting and connectivity augmentation in directed hypergraphs , 2003, Discret. Math..

[46]  Bill Jackson,et al.  Highly edge-connected detachments of graphs and digraphs , 2003 .

[47]  Tibor Jordán,et al.  Detachments Preserving Local Edge-Connectivity of Graphs , 2003, SIAM J. Discret. Math..

[48]  András Frank,et al.  Combined Connectivity Augmentation and Orientation Problems , 2001, IPCO.

[49]  Balázs Fleiner Detachment of Vertices of Graphs Preserving Edge-Connectivity , 2004, SIAM J. Discret. Math..

[50]  Tamás Király Covering symmetric supermodular functions by uniform hypergraphs , 2004, J. Comb. Theory, Ser. B.

[51]  Zoltán Király,et al.  Local Connectivity Augmentation in Hypergraphs is NP-complete , 2005 .